Determination of lot-to-lot variability of reagents

Marith van Schrojenstein Lantman

Affiliations

Stichting Kwaliteitsbewaking Medische Laboratoriumdiagnostiek

Radboudumc

university medical center

From a clinical viewpoint

RL

nt

Ø

0

LONG-TERM VARIATION

Effect of LTLV?

Allowable LTLV – the theorem

EFLM Paper

Marith van Schrojenstein Lantman, Hikmet Can Çubukçu, Guilaine Boursier, Mauro Panteghini, Francisco A. Bernabeu-Andreu, Neda Milinkovic, Pika Mesko Brguljan, Solveig Linko, Duilio Brugnoni, Ruth O'Kelly, Christos Kroupis, Maria Lohmander, Luděk Šprongl, Florent Vanstapel and Marc Thelen*, on behalf of the European Federation of Clinical Chemistry, Laboratory Medicine EFLM Working Group Accreditation, ISO/CEN standards WG-A/ISO

An approach for determining allowable between reagent lot variation

https://doi.org/10.1515/cclm-2022-0083 Received February 1, 2022; accepted February 2, 2022; published online February 16, 2022 that are manageable vs. those that are not. One of the aspects that may influence u_{Rw} is the momentary significant bias caused by shifts in reagent and/or calibrator lots, which, when

Allowable LTLV – the theorem

Abrlot < Uwrlot In J I-6

LTLV – in practice

- Goal
 - Evaluate current performance of PT-INR and APTT on two analyzers
- Data
 - Audit trail: reagent-lot, date/time of change, analyzer
 - Internal QC: date and time of measurement, level, lot material, result, analyzer
 - Patient data: PIN, date and time of measurement, result, analyzer

Methods

• Reagent lot x QC

• Reagent lot x Patient

In practice: if urw << APS, then ubrlot < uwrlot/ sqrt(n)!

APTT – QC level 1

APTT – QC level 2

PT-INR – QC level 1

APS-based

/Ubriot, a

Ubriot '. Uwrlot-based

PT-INR – QC level 2

Ubriot . Uwrist-based

APS-based

/Ubriot, a

Conclusion

- Although LTLV meets APS-based criteria, within-lot precision can still cause significant shifts
 - Effect of continuous improvement over time
- Evaluating LTLV may give insight into integral analytical quality
 - Between-analyzer variation
 - Procedures on data-storage and management
- LTLV may cause adverse clinical decisions

Important notes

- Use of materials
 - Use of appropriate materials (IQC component II)
 - Pooled material → stability?
 - Third-party-QC-material → commutable?
 - Retention time of data
- Improve LTLV
 - Reduce n to increase proportion assigned to between-reagent lot variation
 - Thorough acceptance testing process, overarching multiple reagent lots
- First-lot-syndrome: accuracy of first lot is often overestimated
- Ideally LTLV is established by IVD, monitored by laboratories

Reporting back to the clinician

- Inform doctors when shifts occur!
 - What can they expect?

0

Acknowledgements

- Wouter van Loenen
- Marc Thelen
- Miranda van Berkel
- EFLM Working Group Accreditation, ISO/CEN Standards WG-A/ISO
- You!

Radboudumc university medical center

Stichting Kwaliteitsbewaking Medische Laboratoriumdiagnostiek

Thank you for your attention! I'm happy to answer questions ③