

9 year old boy

Non-consanguineous parents

Mild bleeding tendency:

easy bruising, occasional epistaxis, bled excessively after tonsillectomy some paternal relatives, including father, had mild bleeding tendency

Lab 1				
Assay		Result	RR	
PT	(s)	12	10 – 13	
APTT	(s)	35	30 - 40	
TT	(s)	9	9 - 11	

		Lab 2	
Assay		Result	RR
PT	(s)	30	12 – 15
PT 50:50 mix	(s)	14	12 - 15
APTT	(s)	37	32 – 42
TT	(s)	11	10 - 12
FVII:C	(iu/dL)	7	50 – 150

FVII Padua

Factor VII Deficiency: From Basics to Clinical Laboratory Diagnosis and Patient Management

Thrombosis/Hemostasis
2017, Vol. 23(7) 703-710
© The Author(s) 2016
Reprints and permission:
sagepub.com/journalsPermissions.nav
DOI: 10.1177/1076029616670257
journals.sagepub.com/home/cat

Clinical and Applied

Pierre-Olivier Sevenet, PharmD¹, Daniel A. Kaczor, BS, MT², and Francois Depasse, PharmD, MSc¹

Table 2. Factor VII:C Activity of Different Homozygous FVII Defects According to Girolami et al.²⁷

	FVII Padua (Arg304Gln)	FVII Nagoya (Arg304Trp)	FVII Tondabaya- shi or Shinjo (Arg79Gln)
Mean FVII:C (rabbit brain thromboplastin)	6%	5%	7%
Mean FVII:C (human recombinant thromboplastin)	34%	16%	48%
Mean FVII:C (ox brain thromboplastin)	101%	60%	109%
FVII:Ag	>100%	100%	93%

- Asymptomatic/mild bleeding tendency
- Type II defects with variable activity
- FVII:Ag normal or near normal

Factor VII Padua₂: Another Factor VII
Abnormality With Defective Ox Brain
Thromboplastin Activation and a
Complex Hereditary Pattern

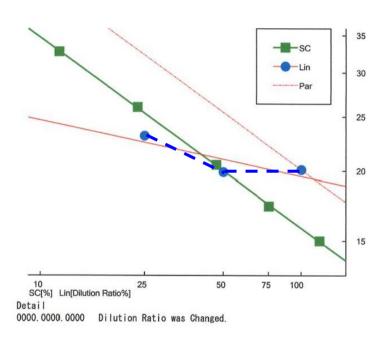
By A. Girolami, G. Cattarozzi, R. Dal Bo Zanon, G. Cella, and F. Toffanin
blood

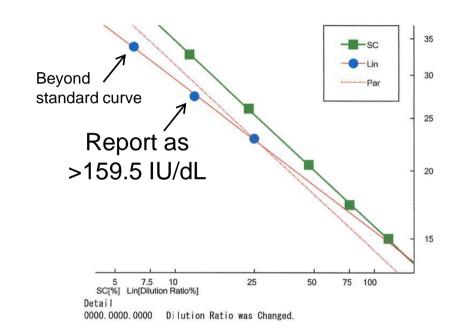
Blood, Vol. 54, No. 1 (July), 1979

81 year old woman

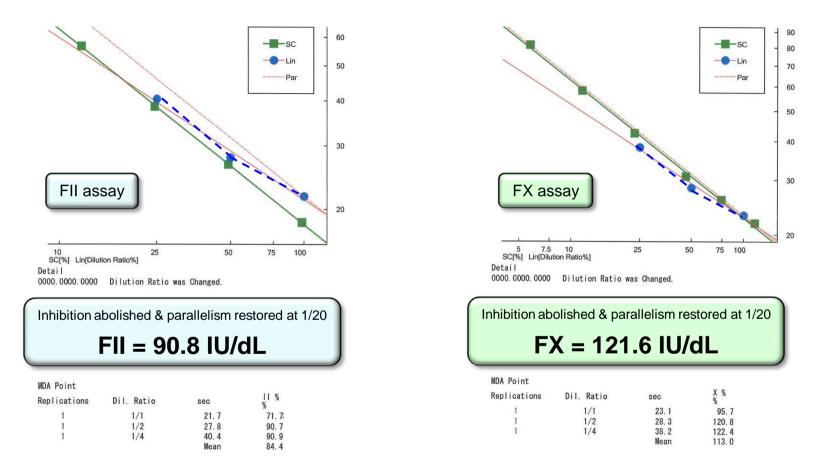
Admitted for radiofrequency ablation of renal tumour in June 2017

No bleeding symptoms or history of bleeding – apparently not anticoagulated


Coagulation screen - June 2017			
Assay		Result	RR
PT/INR		2.3	0.8 – 1.2
PT/INR 50:50 mix		1.4	0.8 – 1.2
APTT	(ratio)	1.0	0.8 – 1.2


Coagulation screen – Sept. 2017			
Assay		Result	Reference range
PT/INR		2.7	0.8 – 1.2
APTT	(ratio)	1.2	0.8 – 1.2
Fibrinogen	(g/L)	3.1	1.7 – 4.0

Vitamin K epoxide <0.27 µg/L


1-stage FVII assay with recombinant human thromboplastin

MDA Point			
Replications	Dil. Ratio	sec	VII %
1	1/1	20. 1	49.4
1	1/2	19.9	101.8
1	1/4	23. 1	131.5
		Mean	94 2

MDA Point			
Replications	Dil. Ratio	sec	VII %
1	1/4	22.9	134.9
1	1/8	27.4	159.5
1	1/16	33.8	173.9
		Mean	156. 1

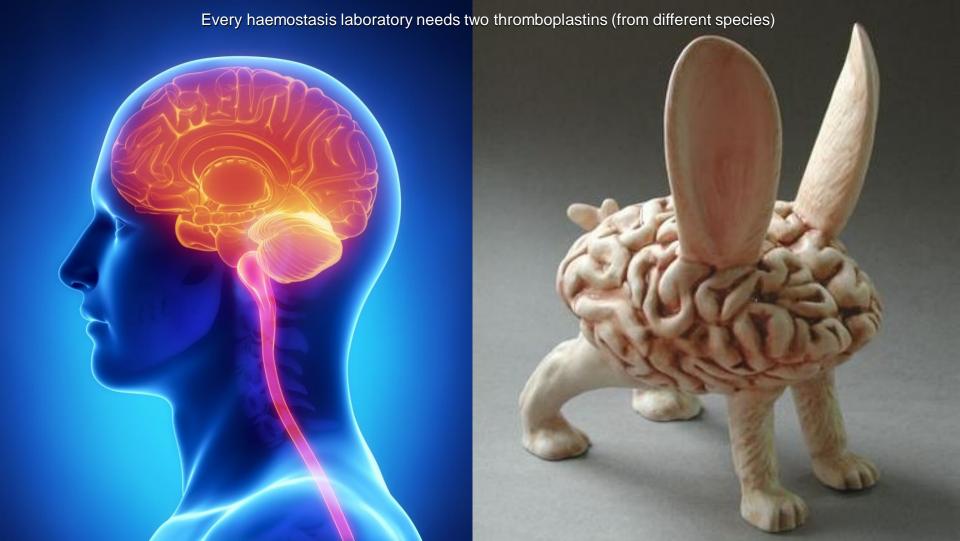
APTT-based one-stage FIX assay was normal and without interference

Lupus anticoagulant assays			
Assay	Units	Result	RR
dRVVT screen	(ratio)	1.23	0.85 – 1.17
dRVVT confirm	(ratio)	0.91	0.90 - 1.10
% correction	(%)	26.0	≥ 10
dRVVT screen 1:1 mix	(ratio)	1.37	0.90 - 1.07
dRVVT confirm 1:1 mix	(ratio)	0.99	0.98 – 1.10
dAPTT screen	(ratio)	1.46	0.80 – 1.20
dAPTT confirm	(ratio)	0.99	0.82 – 1.18
% correction	(%)	32.2	≥ 10
dAPTT screen 1:1 mix	(ratio)	1.38	0.86 – 1.10
dAPTT confirm 1:1 mix	(ratio)	0.88	0.88 - 1.12

However, these are not extrinsic pathway-based assays so how do we know it was the LA affecting the PT?

Rabbit brain thromboplastin

INR 1.0


Optimization of the dilute prothrombin time for the detection of the lupus anticoagulant by use of a recombinant tissue thromboplastin

J. Arnout, M. Vanrusselt, E. Huybrechts, J. Vermylen

BRITISH JOURNAL OF HAEMATOLOGY 1994;87:94-95

Low frequency of elevated prothrombin times in patients with lupus anticoagulants when using a recombinant thromboplastin reagent: implications for dosing and monitoring of oral anticoagulant therapy

British Journal of Biomedical Science Volume 62, 2005 - Issue 1

56 year old female Non-consanguineous parents Asymptomatic

		Lab 1	
Assay		Result	RR
PT	(s)	22	10 – 13
PT 50:50 mix	x (s)	12	10 - 13
APTT	(s)	38	30 - 40
TT	(s)	9	9 - 11
FVII:C	(IU/dL)	120	50 - 150

LA testing by dRVVT, APTT & dPT			Not detected
FX:C	(IU/dL)	25	50 - 150

50 - 150

		Lab 2	
Assay		Result	RR
PT	(s)	21	12 – 15
PT 50:50 mix	(s)	13	12 - 15
APTT	(s)	30	32 – 42
TT	(s)	11	10 - 12
FVII:C (II	U/dL)	117	50 - 150

27

FX Padua

reduced activity with FX chromogenic assay & extrinsic assays normal activity with Russell's viper venom & intrinsic assays normal FX:Ag

FX:C

(IU/dL)

Haemophilia

Persistent validity of a classification of congenital factor X defects based on clotting, chromogenic and immunological assays even in the molecular biology era

A. GIROLAMI, S. VETTORE, P. SCARPARO and A. M. LOMBARDI

Haemophilia (2011), 17, 17-20

Type I	Concordant reduction in activity and antigen	Stuart-like
Type II	Inert protein but measurable antigen	Prower-like
Type III	Dysreactive protein and measurable (higher) antigen	
	 Defects in all activity assays except RVV Defects only or predominantly in extrinsic-Xase Defects only or predominantly in intrinsic-Xase Defects with higher activity levels in chromogenic assays 	Friuli-like Padua-like Melbourne-like
Type IV	Defect associated with other clotting factor deficiencies	i.e. FVII & chromosome 13 abnormalities

8 day old boy given vitamin K at birth - severe bleeding after circumcision

Lab 3								
Assay		Result	RR					
PT	(s)	75	30 – 40					
PT 50:50 mix	(s)	45	30 – 40					
APTT	(s)	130	32 – 42					
APTT 50:50 m	nix (s)	40	32 – 42					
TT	(s)	11	10 - 12					
FII:C	(iu/dL)	75	50 – 150					
FV:C	(iu/dL)	105	50 – 150					
FVII:C	(iu/dL)	55	50 – 150					
FX:C	(iu/dL)	62	50 – 150					

Lab 1							
Assay		Result	RR				
PT	(s)	11	10 – 13				
APTT	(s)	120	30 - 40				
APTT 50:50 mix	(s)	38	30 - 40				
TT	(s)	9	9 - 11				

FVIII:C	(iu/dL)	145	50 – 150
FIX:C	(iu/dL)	<1	50 – 150
FXI:C	(iu/dL)	80	58 – 120
FXII:C	(u/dL)	89	50 – 150

Haemophilia B_M

Markedly prolonged PT with bovine (ox)-brain thromboplastin
May have mildly prolonged PT with other thromboplastins
Can be accompanied by genuine, mild FVII deficiency

FIX Deventer

FIX Milano

FIX Novara

FIX Bergamo

FIX Hilo

FIX Lake Elsinore

FIX:Ag normal – dysfunctional molecule

Inhibitory effect of abnormal FIX in bovine brain PT of TF-dependent FX activation

An investigation of three patients with Christmas disease due to an abnormal type of factor ix

K. W. E. DENSON, ROSEMARY BIGGS, AND P. M. MANNUCCI¹
J. clin. Path. (1968), 21, 160-165

Incidence, significance, and subtypes of hemophilia B_{M} in a large population of hemophilia B patients

A. Girolami, R. Dal Bo Zanon, P. Saltarin, V. Quaino, G. Altinier, T. Ripa, A. Marchetti & D. Stocco

Blut 44, 41-49 (1982)

Studies on the Prolonged Prothrombin Time in Haemophilia B_M

Susan Elödi

Thrombos. Diathes. haemorrh. (Stuttg.), 1973, 29, 247

Comparison of the Behavior of Normal Factor IX and the Factor IX BM Variant Hilo in the Prothrombin Time Test Using Tissue Factors From Bovine, Human, and Rabbit Sources

Jerry B. Lefkowitz, Dougald M. Monroe, Carol K. Kasper, and Harold R. Roberts

American Journal of Hematology 43:177-182 (1993)

Hemophilia B with associated factor VII deficiency: A distinct variant of hemophilia B with low factor VII activity and normal factor VII antigen

A. Girolami, R. Dal Bo Zanon, L. De Marco & G. Cappellato

Blut 40, 267-273 (1980)

Factor IX Deventer-Evidence for the Heterogeneity of Hemophilia $\mathbf{B}_{\mathbf{M}}$

R. M. Bertina and I. K. van der Linden

Thromb Haemostas (Stuttgart) 47 (2) 136-140 (1982)

23 year old male

Right leg occlusive femoral-popliteal DVT after mild muscular stretching (3 days previously)

No FH of thrombosis

Assay		Result	RR			
PT	(s)	11	10 - 13			
APTT	(s)	26	30 - 40			
TT	(s)	10	9 - 11			
Normal antithrombin, protein C, free protein S & APC-R						

Assay		Result	RR
PT	(s)	12	10 - 13
APTT	(s)	25	30 - 40
Fibrinogen	(g/L)	3.2	2.0 – 4.0
FVIII:C	(iu/dL)	100	50 - 150

Causes of shortened APTT:	difficult venepuncture leading to activated sample	spurious result
	analytical error	spurious result
	overfilled sample	spurious result
	natural statistical outlier	genuine result
	elevated FVIII (innate, acquired)	genuine result
	elevated fibrinogen	genuine result

The NEW ENGLAND IOURNAL of MEDICINE

X-Linked Thrombophilia with a Mutant Factor IX (Factor IX Padua)

Paolo Simioni, M.D., Ph.D., Daniela Tormene, M.D., Ph.D., Giulio Tognin, M.D. Sabrina Gavasso, Ph.D., Cristiana Bulato, Ph.D., Nicholas P. Iacobelli, B.A., Jonathan D. Finn, Ph.D., Luca Spiezia, M.D., Ph.D., Claudia Radu, Ph.D., and Valder R. Arruda. M.D., Ph.D.

N ENGL J MED 361;17 NEJM.ORG OCTOBER 22, 2009

Gain of function mutation
Substitution of leucine for arginine at position 338 (FIX-R338L)
X-linked thrombophilia

Table 1. Clinical Characteristics and Laboratory Data from the Family Members.*								
Subject	Sex	Age (yr)	Activated Partial- Thromboplastin Time (sec)†	Factor IX Antigen (% of normal level)	Factor IX Activity (% of normal level)	Factor IX Activity- to-Antigen Ratio		
II-1, proband	М	23	25.7	92	776	8.4		
I-1 , father	M	53	35.2	105	127	1.2		
I-2, mother	F	46	28.2	94	337	3.5		
II-2, brother	М	21	33.4	116	123	1.0		
II-3, brother	М	11	29.1	64	551	8.6		

[†] The normal range for activated partial-thromboplastin time is 30 to 40 seconds.

During warfarin therapy: INR 3.4 FIX:C 160% FIX:Ag 28%

Partial F8 gene duplication (factor VIII Padua) associated with high factor VIII levels and familial thrombophilia

Paolo Simioni, ¹ Stefano Cagnin, ²⁴ Francesca Sartorello, ¹ Gabriele Sales, ² Luca Pagani, ²⁵ Cristiana Bulato, ¹ Sabrina Gavasso, ¹ Francesca Nuzzo, ⁶ Francesco Chemello, ² Claudia M. Radu, ¹ Daniela Tormene, ¹ Luca Spiezia, ¹ Tilman M. Hackeng, ⁶ Elena Campello, ¹ and Elisabetta Castoldi ⁶

Sblood® 29 APRIL 2021 | VOLUME 137, NUMBER 17 2383

First reported thrombophilic defect in *F8*

Described in two Italian families

23.4.kb tandem duplication of proximal portion of F8

Associated with elevated FVIII & VTE

Affects males & females

Table 1. Clinical characteristics and laboratory data of the family members

Participant	Sex	Age, y	Thrombotic events	Age at first VTE, y	PT/INR	aPTT, s*	FVIII:C, %†	FVIII:Ag, %‡	VWF:Ag, %§	Additional thrombophilic defects
Family A										
II-3, proband	F	53	DVT and PE	31	2.88¶	26.5¶	422	432	165	No
1-4	F	77	DVT and PE	49	1.00	21.6	269	296	144	No
II-6	М	45	SVT and DVT	43	0.98	21.1	416	372	60	No
III-1	М	26	No	_	1.11	29.3	132	152	144	No
III-2	М	22	No	_	1.1	27.2	323	368	112	No
Family B										
II-1, proband	М	41	DVT and PE	21	3.1¶	40¶	264	273	78	Heterozygous FV Leiden
I-2	F	66	DVT	24	0.93	22.2	508	457	68	Heterozygous FV Leiden
III-1	F	19	No	_	1.07	26.2	295	270	113	Heterozygous FV Leiden

^{*}Normal range, 26 to 34 seconds. †Normal range, 58% to 162%.

¶VKA treatment.

53 year old male4 months post cardiac surgeryNo bleeding symptoms

Assay		Result	RR
PT	(s)	12	10 – 13
APTT	(s)	36	30 - 40
TT	(s)	>240	9 - 11
Reptilase time	(s)	13	12 – 16
Fibrinogen	(g/L)	4.0	2.0 – 4.0

NOT

UFH

LMWH would not elevate TT that high

Dysfibrinogenemia Clauss fibrinogen too high

Elevated D-dimers would affect reptilase time to some extent

Paraprotein would likely affect reptilase time

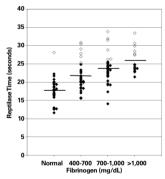
Dabigatran would affect APTT at that level

APTT normal

CAUSE

Antibody to bovine thrombin

Normal thrombin time with human thrombin reagent


49 year old female
Post-op coagulation screen
No other information

Assay		Result	RR
PT	(s)	11	10 – 13
APTT	(s)	50	30 - 40
Fibrinogen	(g/L)	8.3	2.0 – 4.0
TT	(s)	10	9 - 11
RT	(s)	24	12 - 16
FVIII:C	(IU/dL)	208	50 - 150
CRP	(mg/L)	120	0 - 3

Am J Clin Pathol 2002;118:263-268

Elevated Fibrinogen in an Acute Phase Reaction Prolongs the Reptilase Time but Typically Not the Thrombin Time

Elizabeth M. Van Cott, MD, ¹ Eve Y. Smith, ¹ and Dennis K. Galanakis, MD²

? acute phase reaction generates fibrinogen with increased sialic acid &/or phosphorous content

Effect abolished by adding 3 mmol/L CaCl₂ or 2.5% albumin – not abolished if hereditary dysfibrinogenemia

TT & RT used to screen for dysfibrinogenemia – prolonged

Fibrinogen Oslo I Fibrinogen Valhalla associated with thrombosis associated with bleeding

Both give shortened TT

Investigation of sensitivity for coagulation factor deficiency in APTT and PT: how to perform it?

Els N. Dumoulin, Lisse Fiers and Katrien M.J. Devreese*

Clin Chem Lab Med 2016; 54(5): e169-e172

An Analysis of the Sensitivity of the Activated Partial Thromboplastin Time (APTT) Assay, as Used in a Large Laboratory Network, to Coagulation Factor Deficiencies

Louis Do, BAppSc, MBBS , Emmanuel Favaloro, PhD, FFSC, Leonardo Pasalic, MBBS, PhD

American Journal of Clinical Pathology, Volume 158, Issue 1, July 2022, Pages 132–141,

THE SENSITIVITY OF TWO NEW APTT REAGENTS TO FACTORS VIII, IX AND XI

A. Bowyer, S. Kitchen and R. Maclean

Department of Coagulation, Sheffield Haemophilia and Thrombosis Centre, UK

APTT REAGENT	COMPOSITION	SENS	ITIVITY (IL	J/dL)
	EA –ellagic acid			
	RB-rabbit brain PL-phospholipid	FVIII		FXI
Yumizen G APTT 4	Micronised silica RB PL	40.9	26.8	43.3
Yumizen G APTT Liq 4	EA, RB PL	37.4	29.7	48.9
Actin FS	EA purified soy phosphatides	67.3	25.5	49.3
Actin FSL	EA soy/RB phosphatides	46.7	22.6	28.3
APTT SP	Silica synthetic PL	38.4	15.9	35.6
STA-PTTA	Silica, RB PL	47.6	29.0	35.7
Synthafax	EA synthetic PL	62.8	27.5	55.2
Synthasil	Silica synthetic PL	31.5	36.1	49.0

A normal APTT does not necessarily indicate normal coagulation

	PT/INR	APTT ratio	APTTr mix	TT ratio	Fib. g/L			
Date	0.8 – 1.2	0.8 – 1.2	0.8 – 1.2	0.85 – 1.15	1.7 – 3.9			
04.05.18	1.0	1.4	1.0	0.92	-			
05.05.18	1.0	1.3	-	-	-			
07.05.18	1.0	1.1	-	-	-			
08.05.18	1.1	1.0	-	-	-			
10.05.18	1.0	1.2	-	-	-			
13.05.18	1.0	1.3	1.3 -		-			
14.05.18	1.0	1.5	-	-	-			
15.05.18	1.0	1.2	-	0.95	6.4			
Lupus anticoagulant assays (15.05.18)								
Assay Result RR					RR			
dRVVT scree	dRVVT screen (ratio) 1.32 0.85				0.85 – 1.17			
dRVVT confi	rm	(rat	io) 1.1	0	0.90 – 1.10			

(ratio)

(ratio)

(ratio)

% correction

dAPTT screen

dRVVT screen 50:50 mix

dRVVT confirm 50:50 mix

1.10

16.7

1.11

0.99

0.98

≥ 10

0.90 - 1.07

0.98 - 1.10

0.80 - 1.20

43 year	old ma	le	
Renal tı	ansplar	nt in	2006

Admitted for renal surgery May 2018

No history of bleeding

Is the LA causing fluctuating elevation of APTT?

LA detected by dRVVT but not dilute APTT

FXII deficiency masked by grossly elevated FVIII (± high fibrinogen)

FII:C	(iu/dL)	107	50 – 150
FV:C	(iu/dL)	149	50 – 150
FVII:C	(iu/dL)	83	50 – 150
FX:C	(iu/dL)	125	50 – 150
FVIII:C	(iu/dL)	536	50 – 150
FIX:C	(iu/dL)	111	50 – 150
FXI:C	(iu/dL)	99	58 – 120
FXII:C	(u/dL)	27	50 – 150

Bleeding in carriers of hemophilia

Iris Plug, Eveline P. Mauser-Bunschoten, Annette H. J. T. Bröcker-Vriends, Hans Kristian Ploos van Amstel, Johanna G. van der Bom, Joanna E. M. van Diemen-Homan. José Willemse. and Frits R. Rosendaal

Blood. 2006;108:52-56

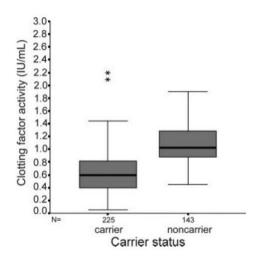
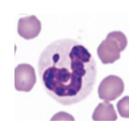


Figure 1. Clotting factor level in relation to carrier status shown for participants for whom clotting factor level is known. This box-whisker plot shows the median and the interquartile range of clotting factor activity levels in carriers and noncarriers. The box is marked by the first and the third quartile; the whiskers indicate the range. The stacked asterisks indicate two extremes (2.09 and 2.19 IU/mL).

Yumizen G APTT 4	Micronised silica RB PL	40.9	26.8	43.3	
Yumizen G APTT Liq 4	EA, RB PL	37.4	29.7	48.9	
Actin FS	EA purified soy phosphatides	67.3	25.5	49.3	
Actin FSL	EA soy/RB phosphatides	46.7	22.6	28.3	
APTT SP	Silica synthetic PL	38.4	15.9	35.6	
STA-PTTA	Silica, RB PL	47.6	29.0	35.7	
Synthafax	EA synthetic PL	62.8	27.5	55.2	
Synthasil	Silica synthetic PI	31.5	36.1	49.0	

Table 3. Bleeding tendency of both carriers and noncarriers according to decreasing clotting factor level

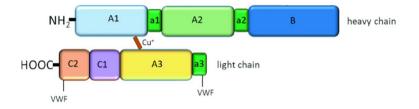
	Clotting factor level			
	More than 0.60 IU/mL	Between 0.41 and 0.60 IU/mL	0.40 IU/mL or below	P for trend
Small wounds				< .01
Event/total (%)	28/233 (12)	25/64 (39)	11/60 (18)	
RR (CI)	1	3.3 (2.0-5.2)	1.5 (0.8-2.9)	
Joint bleeds				.06
Event/total (%)	12/241 (5)	9/65 (14)	6/62 (10)	
RR (CI)	1	2.8 (1.2-6.3)	1.9 (0.8-4.9)	
Tonsillectomy				.06
Event/total (%)	21/124 (17)	6/26 (23)	11/31 (35)	
RR (CI)	1	1.4 (0.6-3.0)	2.1 (1.1-3.9)	
Tooth extraction				< .01
Event/total (%)	18/139 (13)	14/51 (27)	15/36 (42)	
RR (CI)	1	1.8 (1.0-3.0)	2.5 (1.5-4.2)	
Operations				< .01
Event/total (%)	18/139 (13)	14/49 (29)	15/36 (42)	
RR (CI)	1	2.2 (1.2-4.1)	3.2 (1.8-5.7)	
Bleeding score 2 or				
above, RR (CI)	1	3.0 (1.5-5.8)	4.0 (2.1-7.7)	< .01


Women who ever received treatment with clotting factor concentration, tranexamic acid, or desmopressin before tooth extraction, tonsillectomy, or operations were excluded from the analysis.

Haemophilia in females

Some carriers have sufficient reduction in FVIII/FIX to have bleeding symptoms and may require treatment prior to invasive procedures or after major trauma

Reduced FVIII levels in females


- · Extreme lyonisation in a carrier
- Hemizygosity (i.e. XO in Turner Syndrome)
- Type 2N or severe VWD
- True haemophiliac female
- Acquired haemophilia

Assay discrepant non-severe Haemophilia A

Clinically significant discrepancies between 1-stage assay (OSA) & chromogenic substrate assay (CSA) Approximately 30% of non-severe HA

Classical discrepancy - higher OSA result

Unstable FVIIIa heterotrimer and increased A2 dissociation
Clinical severity more in keeping with the lower 2-stage assay result

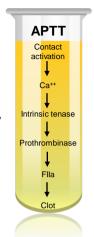
Reverse/Inverse discrepancy - higher CSA result

Impaired activation of FVIII by thrombin

Clinical severity more in keeping with the higher 2-stage result (bleeding rare)

FVIII:Ag often normal or near normal

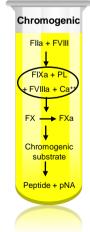
Classical discrepancy (Higher 1-stage)


FVIIIa formed only in final, rapid stage of clotting assay

Effects of unstable FVIIIa minimised

Higher A2 dissociation rate leads to lower result

Higher dilution further influences high dissociation rate


Inverse discrepancy

(Higher 2-stage i.e. CSA)

Impaired activation of FVIII by thrombin

Variants activated by thrombin but at a slower rate

Short FVIII activation period leads to reduced result

Impaired thrombin cleavage compensated by:

- supraphysiological thrombin & FIX concs
- longer incubation
- diluted FVIII protein

Prevalence, biological phenotype and genotype in moderate/mild hemophilia A with discrepancy between one-stage and chromogenic factor VIII activity

M. TROSSAËRT, * P. BOISSEAU, † A. QUEMENER, ‡ M. SIGAUD, * M. FOUASSIER, * C. TERNISIEN, * A. LEFRANÇOIS-BETTEMBOURG, * C. TESSON, † C. THOMAS† and S. BEZIEAU†

J Thromb Haemost 2011; 9: 524-30.

Most patients with reverse discrepancy will have an elevated APTT

BUT

Rarely bleed because 2-stage assay better reflects clinical severity

Many patients with classical discrepancy will have a normal APTT

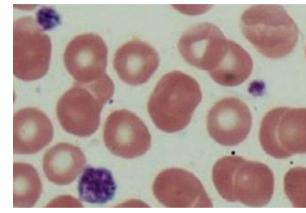
BUT

- More likely to bleed as 2-stage assay better reflects clinical severity
- Diagnosis could be missed from normal APTT &/or normal 1-stage

	Mutation		FVIII:C			
Family	HAMSTeRS	HGVS	1-st assay (IU dL ⁻¹)	Chromogenic assay (IU dL ⁻¹)	1-st FVIII:C/ Chromo-FVIII:C ratio	FVIII:Ag (IU dL ⁻¹)
Low ratio						
A	Phe2127Ser	p.Phe2146Ser	7	49	0.14	71
			5	31	0.16	41
			20	100	0.20	148
			14	64	0.22	84
			16	72	0.22	94
			12	53	0.23	61
			8	33	0.24	30
			14	52	0.27	49
			24	67	0.36	70
			13	51	0.25	50
В	Phe2127Ser	p.Phe2146Ser	4	32	0.13	50
			4	30	0.13	16
C	Phe2127Ser	p.Phe2146Ser	10	55	0.18	34
			25	124	0.20	130
D	Phe2127Ser	p.Phe2146Ser	8	40	0.20	43
_			13	45	0.29	58
E	Phe2127Ser	p.Phe2146Ser	18	76	0.24	82
_			16	57	0.28	57
F	ND	ND	18	61	0.30	74
G	Ile369Thr	p.Ile388Thr	10	82	0.12	126
			9	74	0.12	91
			20	105	0.19	156
	DI 01000	P1 94469	16	100	0.16	100
Н	Phe2127Ser	p.Phe2146Ser	9	32	0.28	47
	CI MACK	CI WAST	7	18	0.39	39
I	Glu720Lys	p.Glu739Lys	30	99	0.30	128
J	Phe2127Ser	p.Phe2146Ser	3	11	0.27	18
		NE	4	14	0.29	26
K	ND	ND	39	194	0.20	195
L	Glu720Lys	p.Glu739Lys	39	115	0.34	144
High ratio	TT: 201 A	TT: 200 A	20	25	1.52	70
M	His281Asn	p.His300Asn	38	25	1.52	70 97
N	Arg531His	p.Arg550His	81	39	2.08	
0	Arg1749His	p.Arg1768His	71	32	2.22	80
P	Phe1785Leu	p.Phe1804Leu	21	13	1.62	40
R	Pro264Leu	p.Pro283Leu	30 14	16	1.88	47 39
			14	5	2.80	39

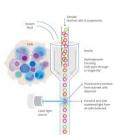
21 yr old Zimbabwean woman admitted with GI bleed requiring transfusion

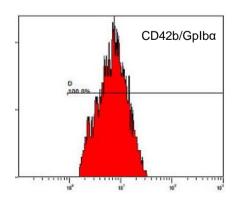
Long history of epistaxis, haematemesis & menorrhagia; bled after appendectomy at 9 yrs old - multiple transfusions

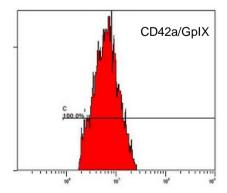

Previous presumptive diagnosis of ITP but poor response to corticosteroids

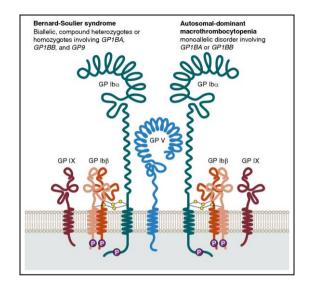
VWF:RCo, VWF:Ag & VWF:CB all normal

Platelet count: 69 x 10⁹/L


Aggregometry: normal with ADP, epinephrine, collagen, TRAP, U46619


markedly reduced with ristocetin




Macrothrombocytopenia

Flow cytometry

Homozygous for c.488C>A substitution (p.Ala163Asp) within exon 3 of GP9

Low frequency polymorphism restricted to sub-set of African population

Only heterozygous individuals reported previously (not presenting as BSS)

Normal quantitative expression of Gplb-IX-V complex Functional defect leading to identical phenotype to classical BSS

Haemophilia The Official Journal of the World Federation of Hemophilia and Allied Disorders and the Hemostalis & Thrombosis Research Society The Official Journal of the World Federation of Hemophilia,

A diagnostic dilemma: variant Bernard-Soulier syndrome, a difficult clinical and genetic diagnosis

S. OKOLI, * B. MADAN, † A. MWIRIGI, * G. MOORE, * A. DREW, * M. J. MITCHELL and I. A. CUTLER† ‡

*Haematology; †Haemophilia, Guys & St Thomas NHS foundation Trust; and †Molecular Haemostasis, Viapath LLP St Thomas' Hospital, London, UK

Bernard-Soulier syndrome is a rare autosomal recessive bleeding disorder, with an estimated frequency of 1:1 000 000, clinically characterized by mucocutaneous bleeding [1]. The classic laboratory findings are macrothrombocytopenia, absent ristocetin-induced platelet aggregation and absent or markedly reduced Glycoprotein Ib-IX-V expression on platelet surfaces. Genetic abnormalities have been identified in three of the genes encoding the subunits of the GPIb-IX-V complex, GP1bA, GP1bB and GP9 [2]. No causative mutations of Bernard-Soulier syndrome have been reported in GP5, and this is consistent with a lack of requirement for GPV expression for expression of the other subunits of the GPIb-IX-V complex.

This case reports a young patient with a complex clinical history, in whom non-classical phenotypic and genotypic laboratory findings complicate the diagnosis of Bernard-Soulier syndrome.

A 21-year-old Zimbabwean female presented with a long history of epistaxis, haematemesis and menorrhagia. Her medical history included migraine, epilepsy and asthma, and she has a single duplex kidney. The patient reports excessive bleeding on previous surgical challenge - bleeding post appendectomy, at 9 years old, requiring multiple blood transfusion and return to theatre for evacuation of haematoma. She has no significant family history, and her parents are non-consanguineous. The patient had extensive ENT and gastrointestinal investigations, which were negative, and was given a presumptive diagnosis of ITP, though importantly she was poorly responsive to corticosteroids.

On this admission she presented a 5-day history of severe acute abdominal pain, haematuria and significant gastrointestinal bleeding requiring blood transfusion. Clinical examination indicated no skeletal

Correspondence: Steven Okoli, Haematology, Guys & St Tho mas NHS foundation Trust, Westminster Bridge Road, London SE1 7EH, UK.

Tel.: +02071887188: fax: +02071882728: e-mail: steven.okoli@nhs.net

Accepted after revision 29 June 2015

abnormalities, normal neurocognitive and cardiac assessments with no hearing deficit. Initial laboratory findings showed platelets of 69 × 109 per L and macrothrombocytopenia with no neutrophilic inclu-

Standard coagulation and von Willebrand factor screens were normal. Further investigations revealed a marked reduced aggregation in response to ristocetin at 0.25 g L-1 (Fig. 2). Platelet glycoprotein expression studies showed normal levels of glycoproteins Ib, and IX, and prompted molecular analysis to confirm the diagnosis of Bernard-Soulier syndrome. All exons and splice junctions of the GP1bA, GP1bB & GP9 genes were subjected to PCR amplification and sequencing, and the only variant detected was a homozygous c.488C>A substitution within exon 3 of GP9.

The patient underwent further urological and gastrointestinal investigations which were once again unremarkable. She was commenced on tranexamic acid and transfused HLA matched platelets, where appropriate. Her bleeding ceased after 14 days, and she was discharged home.

The c.488C>A substitution (Fig. 3) predicts the replacement of the native alanine residue at codon

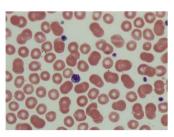


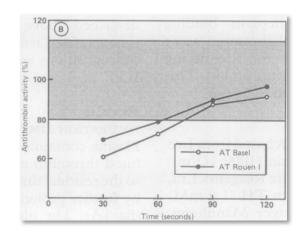
Fig. 1. Peripheral blood film - showing macrothombocytes in variant Bernard-Soulier syndrome.

30 year old male

Unprovoked DVT

Local hospital antithrombin activity (FXa inhibition): 75% (RR: 80 – 125%)

Reference lab. antithrombin activity (FXa inhibition): 28% (RR: 85 – 120%)


Local lab. heparin-binding incubation period:

Reference lab. heparin-binding incubation period:

3 minutes

30 seconds

RECOMMENDATIONS AND GUIDELINES

jth

Recommendations for clinical laboratory testing for antithrombin deficiency; Communication from the SSC of the ISTH

Elizabeth M. Van Cott¹ | Christelle Orlando² | Gary W. Moore³ | Peter C. Cooper⁴ Piet Meijer⁵ | Richard Marlar⁶ | for the Subcommittee on Plasma Coagulation Inhibitors

J Thromb Haemost. 2020;18:17-22.

3. The recommended initial test for antithrombin deficiency is a chromogenic activity (functional) assay with heparin and preferably a short incubation time of 30 seconds, unless reagents are proven to detect HBS mutations with longer incubation times.

Progressive antithrombin assay

Progressive chromogenic anti-factor Xa assay and its use in the classification of antithrombin deficiencies

Bettina Kovács, Zsuzsanna Bereczky, Anna Selmeczi, Réka Gindele, Zsolt Oláh, Adrienne Kerényi, Zoltán Boda and László Muszbek*

Clin Chem Lab Med 2014:52:1797-1806

Heparin-Antithrombin Binding Ratio

Development of a novel, rapid assay for detection of heparin-binding defect antithrombin deficiencies: the heparin-antithrombin binding (HAB) ratio

Gary W. Moore *, Naomi de Jager, Jacqueline A. Cutler

Thrombosis Research 135 (2015) 161-166

2-dimensional crossed immunoelectrophoresis

Antithrombins Southport (Leu 99 to Val) and Vienna (Gln 118 to Pro): two novel antithrombin variants with abnormal heparin binding

V. CHOWDHURY, B. MILLE, R. J. OLDS, D. A. LANE, J. WATTON, T. W. BARROWCLIFFE, I. PABINGER, B. E. WOODCOCK, AND S. L. THEIN

British Journal of Haematology, 1995, 89, 602-609

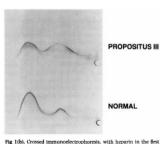


Fig 1(b). Crossed immunoelectrophoresis, with heparin in the first dimension, of plasma from propositus III and a normal control.

36 year old male

Proximal DVT after trauma and immobilisation, previous DVT & PE after long distance flight at age 31

Aunt with history of DVT

Assay		Result	RR
Antithrombin activity	(IU/dL)	105	80 - 120
Protein C activity	(IU/dL)	106	75 - 125
Free protein S antigen	(IU/dL)	115	72 - 130
APC-R (Modified APTT)	(ratio)	2.9	2.0 – 3.5

Assay		Result	RR
Antithrombin activity	(IU/dL)	101	79 - 124
Protein C activity	(IU/dL)	49	70 – 140
Protein C antigen	(IU/dL)	120	60 - 125
Free protein S antigen	(IU/dL)	97	76 - 129
APC-R (Modified APTT)	(ratio)	3.1	<2.0

Type 2b PC deficiency
Reduced activity
Normal antigen

Protein C activity assays Protein C aPTT liquid | aPTT liquid Agkistrodon contortrix protein C activator FVa 4mL RTU APC **Anticoagulate clotting test** Cleave FVa chromogenic substrate **RVVT**

Chromogenic assay

Reliable assays

Not affected by other coagulopathies

Detects abnormalities of: protein C activation enzymatic active site

Southern copperhead (Agkistrodon c. contortrix)

Clotting assay

Interferences: coagulopathies, LA & high FVIII

therapeutic anticoagulation activated protein C resistance

Detects abnormalities of:

protein C activation enzymatic active site FVa & FVIIIa binding protein S binding phospholipid binding

RECOMMENDATIONS AND GUIDELINES

Recommendations for clinical laboratory testing for protein C deficiency, for the subcommittee on plasma coagulation inhibitors of the ISTH

Peter C. Cooper¹ | Anna Pavlova² | Gary W. Moore³ | Kieron P. Hickey¹ | Richard A. Marlar⁴

J Thromb Haemost, 2020;18:271-277.

TABLE 1 Classification of protein C deficiency, and sensitivity and specificity of routinely available assays

Protein C assays and classification according to assay results						
Assay type and characteristics		Type 1 deficiency	Type 2 defi	Subtype 2b	Risk from interferences	
Chromogenic Detects enzymatic cleavage of a small synthetic substrate	Venom	✓	✓	×	Activated samples, HIL	
Clotting-based Detects cleavage of FV and FVIII (Venom-APTT) or FV (Venom-RVV); both require co-factors, including PL, Ca ²⁺ , PS	Venom-APTT	✓	✓	√	Activated samples, LA, high FVIII, APC- R, DOAC, high level of heparin/low molecular weight heparin, HIL	
	Venom-RVV	1	✓	✓	Activated samples, LA, APC-R, DOAC, high level of heparin/low molecular weight heparin, HIL	
Antigen	RID/IE	✓	X	X	EDTA required in IE	
Quantitative assay, does not detect PC function	ELISA ELFA	✓	x	X	Nonspecific binding, HIL	

Laboratory Limitations of Excluding Hereditary Protein C Deficiency by Chromogenic Assay: Discrepancies of Phenotype and Genotype

Clinical and Applied
Thrombosis/Hemostasis
Volume 26: 1,03020
Article reuse guidelines:
sagepub.com/journals-permissions
DOI: 10.1177/1076029620912028
journals.sagepub.com/home/cat

Holger Seidel, MD¹, Bianca Haracska, BSc¹, Jennifer Naumann, PhD¹, Philipp Westhofen, PhD¹, Moritz Sebastian Hass, MSc¹, and Johannes Philipp Kruppenbacher, MD¹

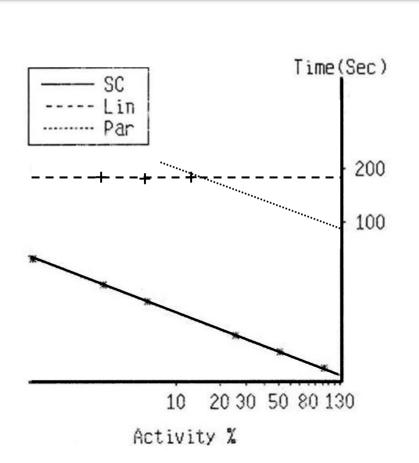
Table 2. Characteristics of Patients With and Without PC Variation.

	Includ	ed Patients (n = 1	287)	
Patient Characteristics	Patients: PC Variation, Chromogen PC Activity ≥70%	Patients: PC Variation, Chromogen PC Activity <70%	Patients: Without PC Variation	
Number of patients	20	81	186	
Females	14	47	154	
Males	6	34	32	
Age (years)	40.9 ± 19.2	36.8 ± 16.8	37.1 ± 15.5	
PC activity chromogen (%)	80.5 ± 11.3	50.8 ± 11.2	77.3 ± 14.7	
PC activity clotting (%)	55.9 ± 10.2	44.0 ± 12.0	62.7 ± 15.8	
PC antigen (%)	69.9 ± 14.8	48.4 ± 16.2	65.3 ± 14.1	
PC antigen (mg/L)	2.4 ± 0.3	1.9 ± 0.6	2.4 ± 0.3	
F VIII activity (%)	116.3 + 40.6	114.9 + 37.2	135.7 + 53.8	
Lupus anticoagulant (lac screen ratio)	1.3 ± 0.5	1.0 ± 0.3	1.0 ± 0.2	
Deep vein thrombosis	7 (35%)	26 (32%)	64 (34%)	
Pulmonary embolism	3 (15%)	8 (10%)	21 (11%)	
Factor V Leiden	6 (30%)	10 (12%)	44 (24%)	
Women with pregnancy complications	2 (10%)	9 (19%)	42 (27%)	

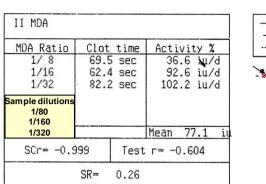
Diabetic 66 year old female

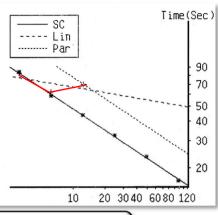
Recent ciprofloxacin & penicillin for painful, oozing leg ulcers

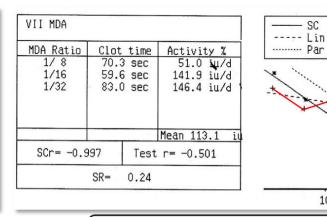
Presented with melena: Hb 60 g/L

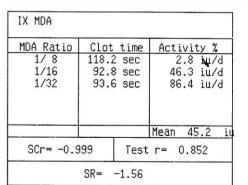

INR >10 APTTr 4.0 FII:C very low (!)

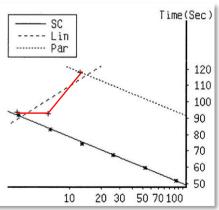
Patient denies taking warfarin - given vitamin K but no correction (yet)

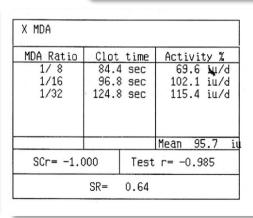

Assay	Result	RR
PT/INR on photo-optical analyser (recombinant human thromboplastin)	>10	0.8 – 1.2
PT/INR manual with mechanical clot detection (rabbit brain thromboplastin)	7.0	0.8 – 1.2
APTT on analyser (ratio)	>10	0.8 – 1.2
APTT (manual) (ratio)	4.8	0.8 – 1.2
TT (ratio)	1.15	0.80 – 1.23
Fibrinogen (g/L)	3.0	2.0 – 4.0

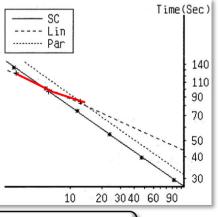

Assay		Result	RR
Plasma warfarin	(mg/L)	< 0.12	0.70 - 2.30
Vitamin K1	(µg/L)	11.0	0.15 – 1.55
Vitamin K epoxide	(µg/L)	<0.12	0.00 – 0.12


All one-stage PT & APTT based assays flat-lined at dilutions of 1/10, 1/20, 1/40


FVIII by CSA 399 IU/dL





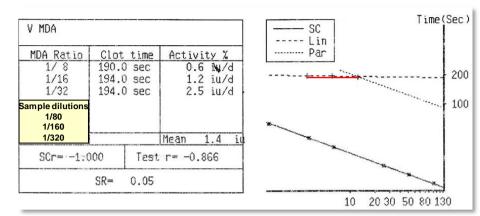

FII inhibition almost abolished at high dilutions >102 IU/dL

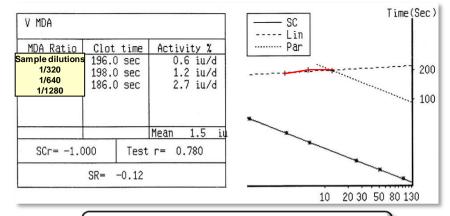
20 3040 6080 120

Time(Sec)

100

80

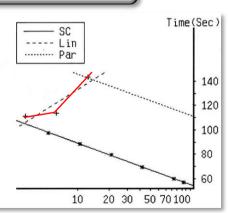

60

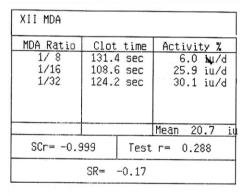

40

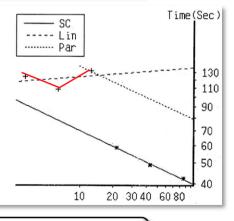
30

FIX inhibition not fully abolished at high dilutions >86.4 IU/dL

FX inhibition almost abolished at high dilutions >115.4 IU/dL




FV ostensibly still flatlining level rising with dilution (beyond std curve)


XI MDA MDA Ratio Clot time Activity % 1/8 143.2 sec 1.9 Nu/d 27.9 iu/d 113.4 sec 1/16 1/32 111.0 sec 66.3 iu/d 32.0 Mean SCr= -1.000 Test r= 0.898

SR= -1.70

? inhibition being diluted? dilution too high level rising with dilution (beyond std curve)

FXI inhibition not fully abolished at high dilutions ? >66.3 IU/dL (beyond standard curve)

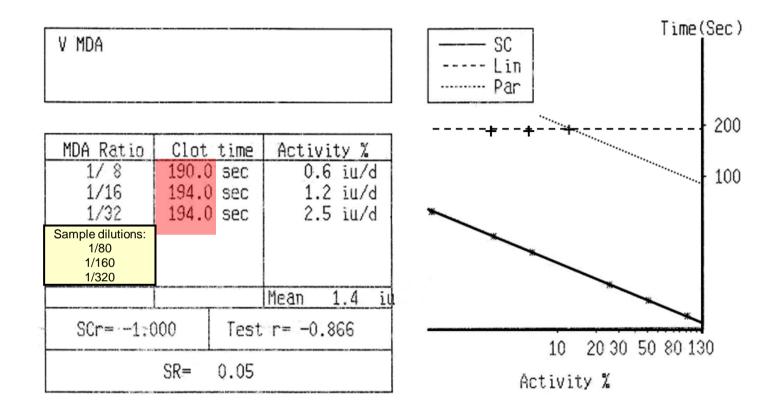
FXII inhibition almost abolished at high dilutions ? >30.1 IU/dL (beyond standard curve)

Antiphospholipid antibodies

_	-	•	
LA assays			RR
dRVVT	(ratio)	No clot	0.86 – 1.19
dRVVT confirm	(ratio)	No clot	0.83 – 1.13
dRVVT screen 50:50 mix	(ratio)	7.52	0.90 – 1.10
dRVVT confirm 50:50 mix	(ratio)	No clot	0.94 – 1.13
dAPTT	(ratio)	No clot	0.81 – 1.23
dAPTT confirm	(ratio)	No clot	0.81 – 1.13
dAPTT screen 50:50 mix	(ratio)	4.98	0.86 – 1.15
dAPTT confirm 50:50 mix	(ratio)	4.24	0.85 – 1.09
% correction of screen by confir	m	14.9	<10%
Solid-phase assays			
IgG aCL	(GPL U/mL)	2.6	>7.0
IgM aCL	(MPL U/mL)	1.4	>7.0
IgG antiprothrombin antibodies	(U/mL)	3.5	>6.0
IgM antiprothrombin antibodies	(U/mL)	2.8	>5.0

[?] extremely potent lupus anticoagulant due to dAPTT mixing tests

.....yet dRVVT confirmatory tests overwhelmed



Snake venom prothrombin activators

Assay	Result	RR
Taipan snake venom time (ratio)	1.29	0.91 – 1.11
Ecarin time (ratio)	0.96	0.92 – 1.08
% correction	25.6	<10

Venom fraction	Co-factor requirements
Oscutarin C	Phospholipid
	Ca ²⁺
Ecarin	None

FV Bethesda assay 307 BU/mL

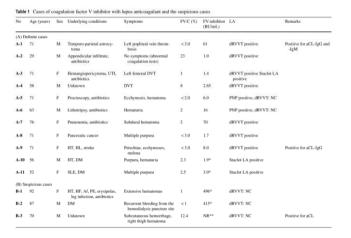
Although activity apparently rises with dilution, each clotting time is effectively a blank

Bleeding in the antiphospholipid syndrome

Ricardo Forastiero

Hematology 2012 VOL. 17 SUPPL. 1 S153

- Thrombocytopenia rarely severe enough to cause bleeding - except CAPS. DIC
- Lupus anticoagulant hypoprothrombinemia syndrome


Masahiro leko^{1,2,3} • Sumiyoshi Naito⁴ · Mika Yoshida⁴ · Kazumasa Ohmura³ · Nobuhiko Takahashi³ · Norifumi Sugawara¹ · Kazuki Kiyohara¹ · Kenji Shimosegawa¹ · Akitada Ichinose⁵

A discrepancy between prothrombin time and Normotest (Hepaplastintest) results is useful for diagnosis of acquired factor V inhibitors

Yasuko Kadohira¹ · Shinya Yamada¹ · Tomoe Hayashi¹ · Eriko Morishita¹ · Hidesaku Asakura^{1,2} · Akitada Ichinose^{2,3}

International Journal of Hematology (2018) 108:145-150

Normotest contains

rabbit brain thromboplastin adsorbed bovine plasma

 Even if Normotest result abnormal, bovine FV provides compensatory effect relative to plain thromboplastin

	Assay		Daughter	Father	RR
16 yr old girl and her 41 yr old father	PT	(s)	19.2	17.2	11.5 – 15.5
She bled profusely after surgery	PT 50:50 mix	(s)	13.9	13.6	11.5 – 15.5
Father history of haematoma development	APTT	(s)	>180	>180	28.0 – 43.5
after trauma (began at 14)	APTT 50:50 mix	(s)	99.9	73.2	28.0 – 43.5
	тт	(s)	>240	>240	11.0 – 19.0
	TT 50:50 mix	(s)	>240	>240	11.0 – 19.0
	Reptilase time	(s)	16.0	15.9	11.0 – 19.0
Looks like UFH but not anticoagulated	Fibrinogen	(g/L)	3.9	2.9	2.0 – 4.0
dRVVT might suggest LA	dRVVT	(s)	99.8	102.3	27.0 – 41.0
Why the incoagulable thrombin times?	dRVVT 50:50 mix	(s)	53.5	57.6	27.0 – 41.0
There is certainly an inhibitor	D-dimers (µg/mL)	0.01	0.07	<0.2

FII		77	88	50 – 150	
FV		95	76	50 – 150	
FVII		93	98	50 – 150	
FVIII		Normal with increased dilutions	Normal with increased dilutions	50 – 150	
FIX		Normal with increased dilutions	Normal with increased dilutions	50 – 150	
FX		36	41	50 – 150	
FXI		2	12	50 – 150	
FXII		20	36	50 – 150	
Antithrombin	(FIIa inhibition)	200	190	89 – 130	
Protein C	(chromogenic)	0	0	69 – 151	
Protein S	(APTT)	Normal with increased dilutions	Normal with increased dilutions	52 - 139	
Maximal platelet aggregation:	ADP 10µM	62	51	50 – 100	
Maximal platelet aggregation:	FIIa 3 U/mL	9	10	60 - 100	
Looks like another pan-inhibitor - greater influence on APTT-based assays α_1 -antitrypsin Pittsburgh					
Remember incoagulable th	rombin time but	normal reptilase time and fibrinogei	Ω ₂ -antitrypsin Pittsburgh in a fam	ly with bleeding tendency	
2 significance of high antitle	arambin 8 radus	ad thrombin induced platelet aggree	Baolai Hua,¹ Liankai Fan,¹ Yan Liang,² Yongqian	Zhao, and Edward G.D. Tuddenham Haematologica 2009;94:881-884.	
' significance of high antithrombin & reduced thrombin-induced platelet aggregation Haematologica 2009;94:881-884.					

Daughter

Dad

RR

Assay (%)

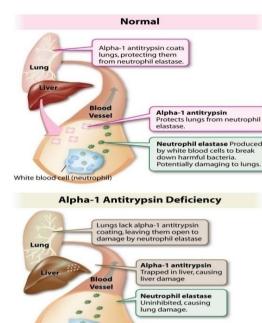
α₁-antitrypsin

 α_1 -antitrypsin is a SERPIN that inhibits a wide variety of proteases

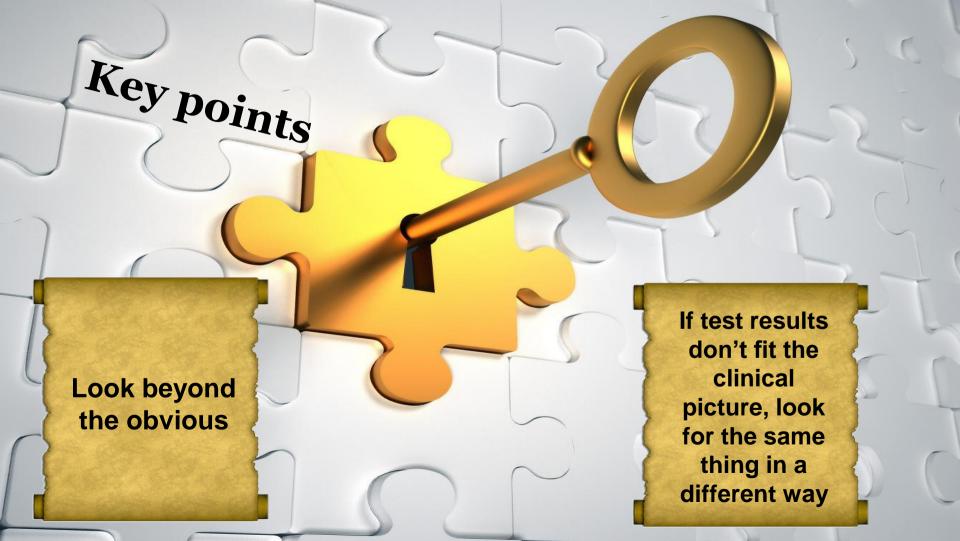
Protects tissues from enzymes of inflammatory cells, especially neutrophil elastase

Acute phase protein – further elevation limits damage by activated neutrophils

Deficiency leads to chronic, uninhibited tissue breakdown, especially in lungs

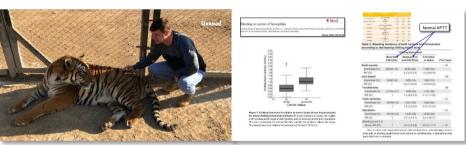

Leads to emphysema & COPD

α₁-antitrypsin Pittsburgh


Bleeding occurs after trauma - acute phase response elevates levels of mutant protein

 α_1 -antitrypsin Pittsburgh has increased anti-thrombin activity

 α_1 -antitrypsin Pittsburgh has strong affinity for protein C leading to increased turnover and low circulating levels – maintains balance other than in trauma


Isolated elevated PT expected to be FVII deficiency but was FX deficiency

Haemophilia A hidden by normal APTT due to nature of mutant molecules

FXII deficiency masked by elevated FVIII

Haemophilia A carriers with bleeding tendency, FVIII 40-60%, normal APTT

FVII deficiency that cannot manifest in every PT

Ever wondered what a normal PT or APTT really tell you

