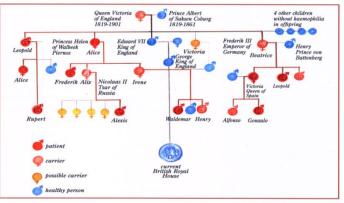
HEMOPHILIA AND GENE THERAPY

Prof Dr Frank W.G. Leebeek Dept Hematology Erasmus MC

Rotterdam The Netherlands

Hemophilia : a bleeding disorder

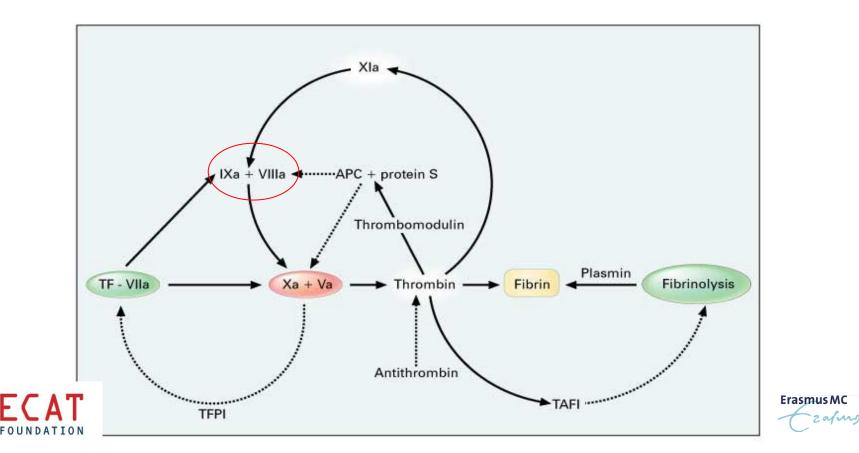

Deficiency of coagulation factor VIII Deficiency of coagulation factor IX (hemophilia A) (hemophilia B)

Prevalence:1: 10.000X-linked disease males are affected, females are carrierCaused by a mutation/deletion/inversion in FVIII or FIX geneHemophilia A:B6:1

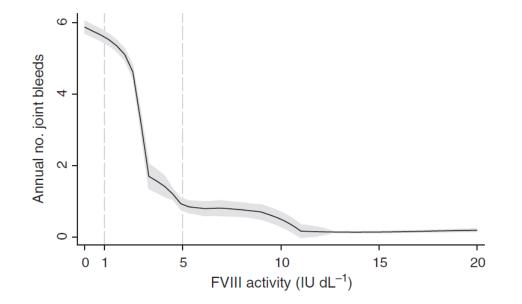
< 1%

Severity:

1 - 5% > 5%-40% (severe) (moderate) (mild)



Secondary hemostasis


Hemophilia: a bleeding disorder

Joint bleeding Muscle bleeding Intracranial bleeding Bleeding after trauma, surgery or interventions

Severe hemophilia: Moderate/mild hemophilia: spontaneous bleeding most bleedings after trauma or interventions

Annual joint bleeds and FVIII level

Den Uijl, et al. Haemophilia 2011

Erasmus MC Calmo

Muscle bleeds

Joint bleed

knee bleed

Long term damage: arthropathy

Current hemophilia treatment: prophylaxis

Erasmus MC

Aim: to prevent joint bleeds and hemophilia arthropathy

- Hemophilia A : F VIII 2 4 x / week intravenous administration
- Hemophilia B : F IX 1 2 x / week intravenous administration

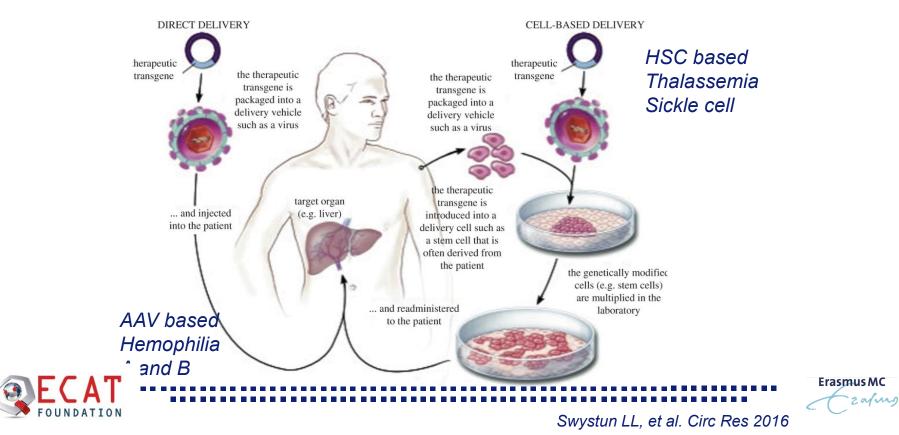
Emicizumab: MAb mimicks FVIII activity once/ 2 weeks s.c

Drawbacks of current hemophilia treatment

- Regular intravenous infusions 1-4 x/week life long
- Bleedings still occur, fear for bleeding
- No cure of the disease
- Several complications may occur due to factor infusion
 - Inhibitors, infections, allergic reactions
- High costs of coagulation factor treatment or MAb treatment
- 75% of the world hemophilia population is not treated

Aim of gene therapy in Hemophilia

Adding the FVIII or FIX gene leads to expression of FVIII or FIX


Reduction of spontaneous bleedings and arthropathy

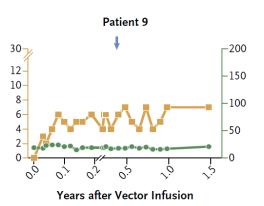
No regular prophylaxis necessary

Improvement of quality of life

Gene therapy

Mode of action of in vivo gene therapy

Gene Therapy DNA encoding FactorIX Factor IX Proteins Virus carrying Factor IX Gene Nucleus Human Cell

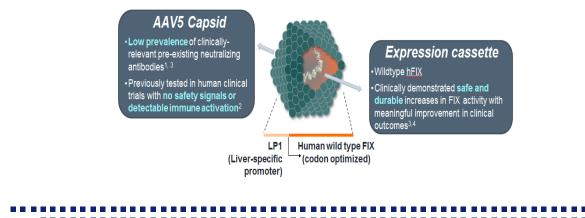

First AAV-8 gene therapy trial

The NEW ENGLAND JOURNAL of MEDICINE

N ENGL J MED 371;21 NEJM.ORG NOVEMBER 20, 2014

Long-Term Safety and Efficacy of Factor IX Gene Therapy in Hemophilia B

A.C. Nathwani, U.M. Reiss, E.G.D. Tuddenham, C. Rosales, P. Chowdary,
J. McIntosh, M. Della Peruta, E. Lheriteau, N. Patel, D. Raj, A. Riddell, J. Pie,
S. Rangarajan, D. Bevan, M. Recht, Y.-M. Shen, K.G. Halka, E. Basner-Tschakarjan,
F. Mingozzi, K.A. High, J. Allay, M.A. Kay, C.Y.C. Ng, J. Zhou, M. Cancio,
C.L. Morton, J.T. Gray, D. Srivastava, A.W. Nienhuis, and A.M. Davidoff

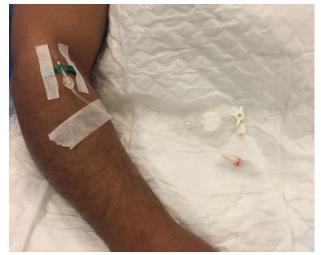


Regular Article

GENE THERAPY

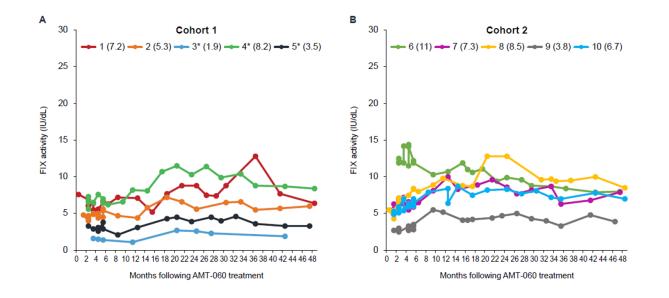
Gene therapy with adeno-associated virus vector 5-human factor IX in adults with hemophilia B

Wolfgang Miesbach,¹ Karina Meijer,² Michiel Coppens,³ Peter Kampmann,⁴ Robert Klamroth,⁵ Roger Schutgens,⁶ Marco Tangelder,⁷ Giancarlo Castaman,⁸ Joachim Schwäble,⁹ Halvard Bonig,^{9,10} Erhard Seifried,⁹ Federica Cattaneo,¹¹ Christian Meyer,¹² and Frank W. G. Leebeek¹³



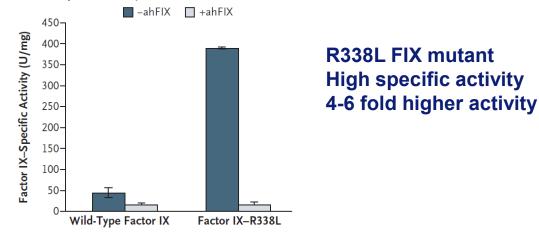
Miesbach, W et al. Blood 2018

AMT-060 administration


Locally prepared in pharmacy 250 mL total volume infusion 30 minute IV infusion 24 hour observation in hospital

- 10 patients treated in Phase I/II trial
- 6 treated in the Netherlands (ErasmusMC, UMCG, UMCU, AMC)

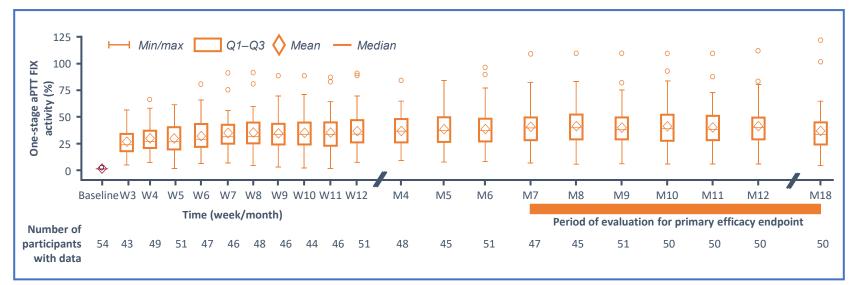
Stable long-term expression of FIX



BRIEF REPORT

X-Linked Thrombophilia with a Mutant Factor IX (Factor IX Padua)

Factor IX-Specific Activity



Erasmus MC 2 almg

Simioni P, et al , NEJM 2009

Sustained FIX activity levels up to 18 months

Uncontaminated central laboratory data (the visit did not occur within 10 days of exogeneous FIX use). FIX levels beginning with the Week 3 assessment were used in the analysis. Subjects with 0 uncontaminated centrallaboratory post-AMT-061 values had change from baseline assigned to zero for this analysis and had their post-baseline values set equal to their baseline value. Baseline FIX was imputed based on subject's historical hemophilia B severity documented on the case record form. If the patient had documented severe FIX deficiency (FIX plasma level <1%), their baseline FIX activity level is imputed as 1%. If the subject had documented moderately severe FIX deficiency (FIX plasma level ≥1% and ≤2%), their baseline FIX activity level was imputed as 2%.

Mean (SD) FIX activity

6 months: 39.0 IU/dL (18.7); 18 months: 36.9 IU/dL (21.4)

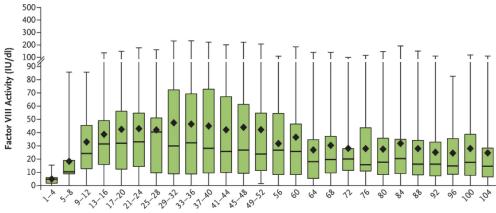
Erasmus MC

zalus

en W. Pipe, Frank W.G. Leebeek, on behalf of the HOPE-B Investigators ASGCT 2022), 16-19 May 2022

The NEW ENGLAND JOURNAL of MEDICINE

ESTABLISHED IN 1812


MARCH 17, 2022

VOL. 386 NO. 11

Valoctocogene Roxaparvovec Gene Therapy for Hemophilia A

M.C. Ozelo, J. Mahlangu, K.J. Pasi, A. Giermasz, A.D. Leavitt, M. Laffan, E. Symington, D.V. Quon, J.-D. Wang, K. Peerlinck, S.W. Pipe, B. Madan, N.S. Key, G.F. Pierce, B. O'Mahony, R. Kaczmarek, J. Henshaw, A. Lawal, K. Jayaram, M. Huang, X. Yang, W.Y. Wong, and B. Kim, for the GENEr8-1 Trial Group*

$B \quad \text{Modified Intention-to-Treat Population, Subgroup with Infusion} \geq 2 \text{ Yr before Data Cutoff (N=17)}$

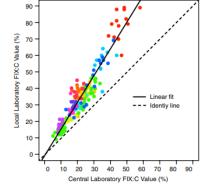
Study Weeks

MAIN OUTCOMES:

Increase of FVIII to mean of 42 IU/dL Variable response Decrease of bleeding by 84% FVIII levels decreased over time At 5 years 50% of patiënts had FVIII levels > 5 IU/dL

ALT elevations in 85%

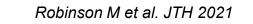
Approved by EMA 2022



FIX measurements after gene therapy

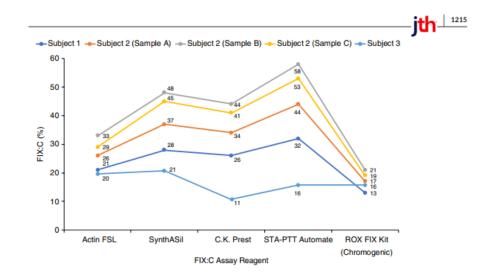
Parameter	FIX:C APTT One-stage Clotting Assays				FIX:C Chromogenic Assay
Manufacturer	Siemens Healthcare Diagnostics	Instrumentation Laboratory	Diagnostica Stago	Diagnostica Stago	ROSSIX
Instrument	BCS XP	ACL TOP	STA-R Evolution	STA-R Evolution	BCS XP
Reagent	Actin FSL	HemosIL SynthASil	STA-C.K. Prest	STA-PTT Automate	ROX Factor IX Kit
Activator	Ellagic acid	Silica	Kaolin	Silica	NA
% CAP-accredited laboratories (2017)	23%	26%	5%	34%	NA

Factor levels after gene therapy with fidanacogene elaparvovec


Lower levels locally vs centrally measured

Erasmus MC

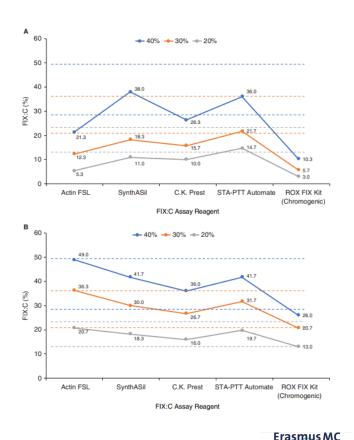
zam



Variability in FIX assays

Results for individual assays differed

Chromogenic assay results are lower than one-stage (APTT-based) levels


Spiking experiments

FIX levels differ between various assays

Spiking with FIX Padua: lower levels measured with various assays

Spiking with FIX WT: less variability between assays

At present, one-stage clotting assays are used in clinical practice to measure the labeled potency of approved FIX therapeutics and to monitor individuals undergoing therapy

am

Gene therapy for Hemophilia: Benefits and Limitations

Benefits

Single infusion

Clinical relevant expression of factor VIII and IX even up to within normal range

Durability of response for at least 4 years in Hemophilia A and 8 years in Hemophilia B

Reduction of bleeding episodes

No need for prophylaxis

Improvement of health related Quality of life

Limitations

(Mild) infusion related effects

High variability in achieved factor levels and FVIII levels may decrease over time in hemophilia A

Immune response to capsid may lead to (long-term) liver function abnormalities and need for corticosteroids (on demand or prophylactic)

Patients with pre-existing AAV antibodies and children are excluded

High costs, limited availibility world-wide

Long-term durability of treatment and side effects due to integration (risk of malignancy) are unknown

Redosing with AAV not possible

Leebeek FWG & Miesbach W. Blood 2021

Conclusions

AAV-based gene therapy for hemophilia A and B is feasible, safe and effective

FVIII and FIX levels in the normal range may be achieved

High variability in factor levels between various assays

CSA results lower than OSA

FVIII gene therapy (Roctavian) received conditional marketing authorisation throughout EU 24-08-2022

