

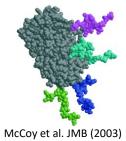
Next-generation antithrombin diagnostics by mass spectrometry

<u>M. Kruijt</u>, M.M. Treep, C.M. Cobbaert, L.R. Ruhaak

Department of Clinical Chemistry and Laboratory Medicine

Antithrombin

AT deficiency


2

- Low or dysfunctional AT
- High risk of venous thromboembolism

Causes

- Mutations (350+ reported)¹
- Aberrant glycosylation²

Patnaik et al., Haemophilia (2008)
De la Morena-Barrio et al., J Thromb Haemost (2016)

Diagnostics

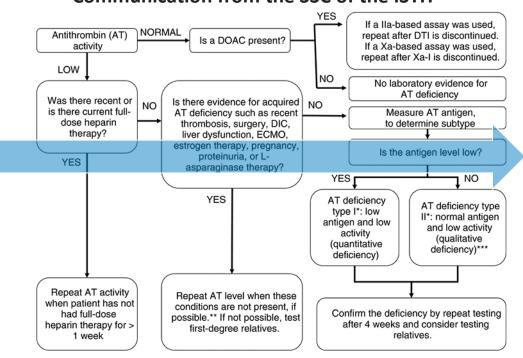
	All-Method Accuracy		All-Method Precision		
Analyte	Bias, %	Ranking *	CV, %	Ranking	Final Ranking ^b
Antithrombin					
Activity	2.6	1	6.3	2	1
Antigen Protein C	3.8	3	7.6	3	2
Activity	8.5	5	6.1	1	2
Antigen Protein S	3.4	2	20.0	7	4
Activity	8.76	6	15.8	5	5
Total Ántigen	6.2	4	15.0	4	3
Free Antigen	8.79	7	17.3	6	6

Cunningham et al., Arch Pathol Lab Med (2011)

Europe

	LCV _a (%)		
Analyte	Median	95% CI	Number of laboratories
Antithrombin (activity)	7.6	3.6-35.5	136
Protein C (activity)	8.6	3.5-25.3	132
Protein C (antigen)	10.8	4.8-33.1	48
Protein S (total antigen)	13.4	6.4-50.6	79
Protein S (free antigen)	14.1	6.5-79.1	65
Protein S (activity)	17.2	7.2-84.3	69

Meijer et al., J Thromb Haemost (2003)


Simple test, simple diagnosis?

Van Cott et al., J Thromb Haemost (2019)

Recommendations for clinical laboratory testing for antithrombin deficiency; Communication from the SSC of the ISTH

3

The diagnosis

Vermeer, Girl with a pearl earring (1665)

It's all in the details...

The activity results

4

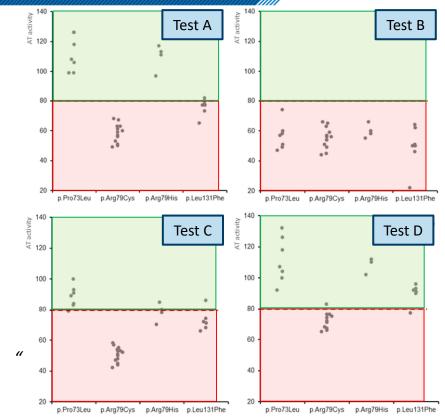
The diagnosis?

Vermeer, Girl with a pearl earring (1665)

The mutation

Herbert, A Compendium of Cultured Cats (2015)

Limitations of traditional diagnostics


- Risk of underdiagnosis using activity tests
- Belief: lower activity = more severe disease

activity in vitro ≠ functionality in vivo ISTH SSC:

"Molecular testing [...] will identify mutations that can be missed by traditional activity assays." Specific mutations may have specific risks

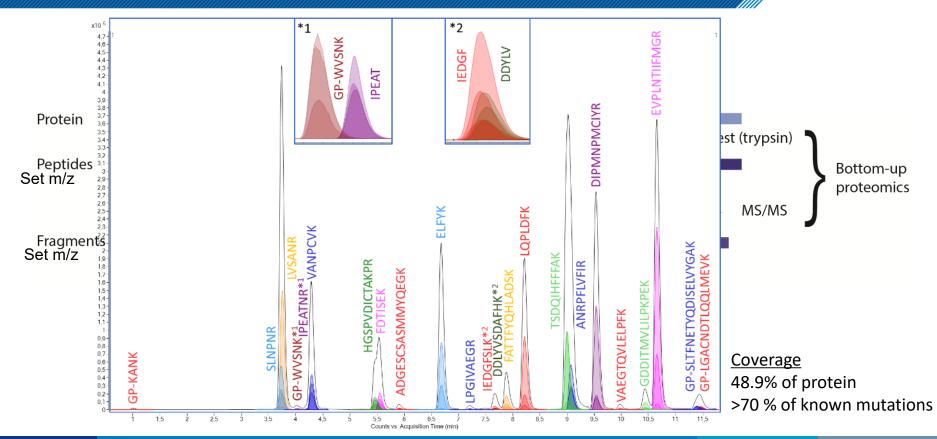
- Venous Thromboembolism (VTE)
- Arterial Thromboembolism (ATE)
- Recurrent Pregnancy Loss (RPL)

5

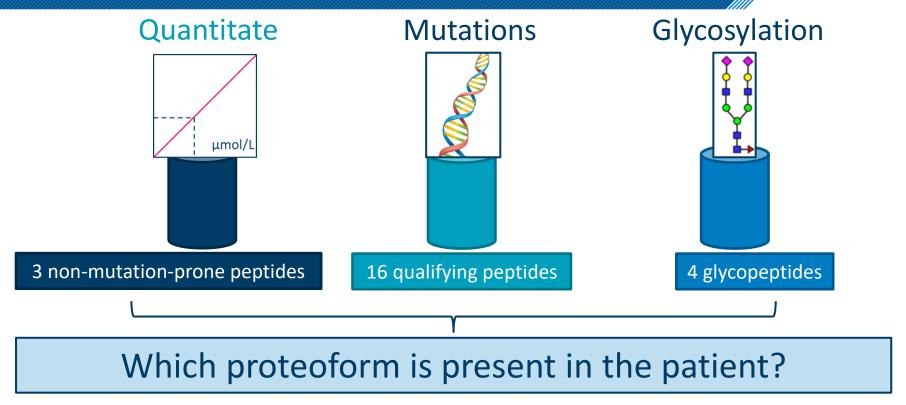
Adapted filonaij Certarid d Elevanth Harris orses (2025)

Clinical example

6

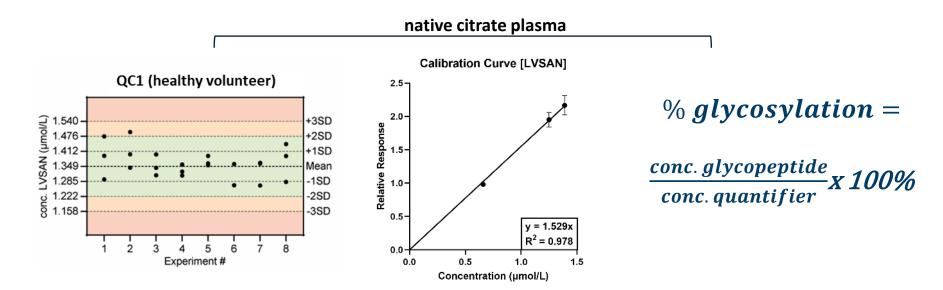

Kruijt et al., J Thromb Haemost (2021)

Woman with unexplained recurrent pregnancy loss

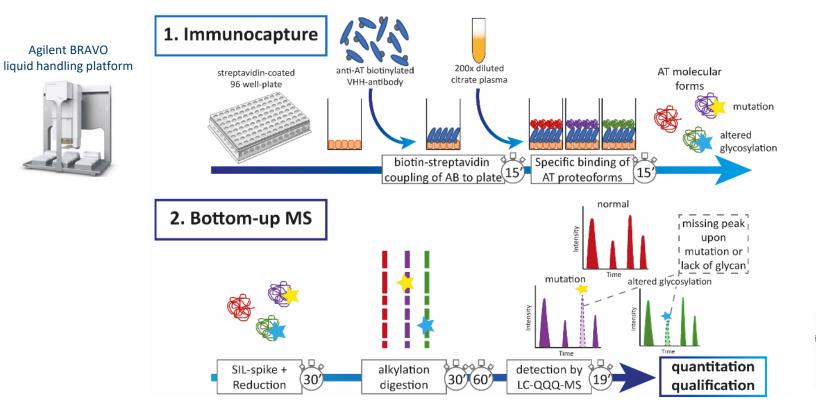

- No (familial) history of VTE
- Thrombophilia screening due to study eligibility

Test	Result	Reference
Protein C (% activity)	106	>66
Protein C (% antigen)	69	>64
Factor II (% antigen)	88	60-137
Factor X (% antigen)	65	65-121
Free Protein S (IU/mL)	1.00	0.53-1.51
APC resistance (ratio)	5.56	>2.90
Factor II mutation	ND	
Antithrombin (% activity)	69-72	84-116

Mass spectrometry for precision diagnostics



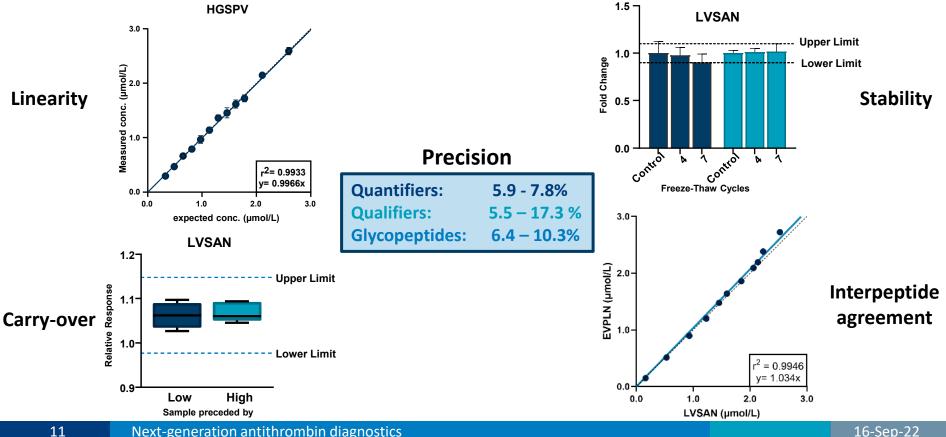
Molecular characterization by peptide monitoring



synthetic peptides

- Stable-Isotope-Labelled Peptide spike (internal control)
- System Suitability Test (monitor system performance)

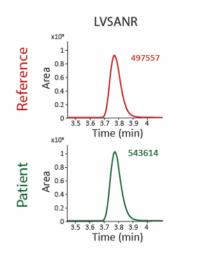
Precision diagnostics by LC-MRM-MS



Agilent 6495C LC-QQQ-MS

Analytical validation

Kruijt et al., manuscript in preparation

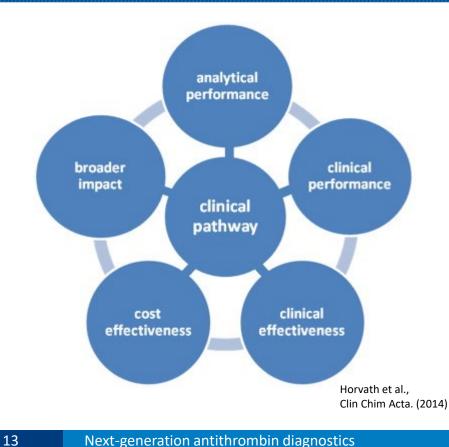


Bringing the test into clinical practice

Kruijt et al., J Thromb Haemost (2021)

Woman with unexplained recurrent pregnancy loss

• Thrombophilia screening: activity AT 69-72%


12

Peptide	Result	Reference	
LVSANR (µmol/L)	1.91	1.33 - 1.91	

Clear diagnosis of AT deficiency caused by heterozygous Pro73Leu mutation

Associated with pregnancy complications (Puurunen et al. , J Thromb Haem (2013)

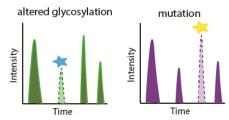
Next steps

investigate potential of the test in **RPL** population (M.P. van der Helm, kcio)

Conclusion

Correct test, correct result, correct interpretation?

- Should we (only) look at the (average) activity?
- Do underlying proteoforms tell us more about patient risks?


Alternative / Add-on: AT proteoforms by mass spectrometry

- Molecular characterization in an all-in-one test
- Analytical performance according to pre-set specifications

Next step: clinical performance / effectiveness

- Which patients may benefit most from a more personalized approach?
- Can we use the test to evolve into precision/personalized medicine?

Thank you for your time

Department of Clinical Chemistry and Laboratory Medicine


T.T. van Duijl M.M. Treep N.P.M. Smit **C.M. Cobbaert M.P. van der Helm** E. Reijnders M.M. Pieterse F.P.H.T.M. Romijn L.R. Ruhaak Department of Thrombosis and Haemostasis L.M. van der Pol

J. Eikenboom

Department of Obstetrics H.J. Verburg

M. Kruijt (m.kruijt@lumc.nl)

