

Hemophilia Treatment and Laboratory Testing

Stefan Tiefenbacher, PhD Technical Director, Vice President Colorado Coagulation, Laboratory Corporation of America Holdings ©2018 Laboratory Corporation of America[®] Holdings All rights reserved.

Conflict	Disclosure
Research Support	No conflict of interest to disclose
	Officer and Employee of Laboratory
Director, Officer, Employee	Corporation of America [®] Holdings
Shareholder	No conflict of interest to disclose
Honoraria	Novo Nordisk
Advisory Committee	Novo Nordisk, Siemens Healthcare
Consultant	Novo Nordisk

Laboratory Evaluation of Hemophilia

- Clinical laboratory plays important role in:
 - Diagnosis and classification of disease severity
 - Monitor treatment (e.g. assessing recovery of replacement factor after infusion)
- With the approval of novel hemophilia treatment therapies, adjustments to the assays commonly used to monitor therapy in the clinical laboratory will be required

Laboratory Assays Currently Used to Monitor Hemophilia Therapy

- One-stage clot assay (OSA)
 - Standard factor activity assay used in clinical laboratories
 - Many different instrument/reagent combinations available
 - Simple, rapid, inexpensive and easy to automate
- Chromogenic substrate assay (CSA)
 - Based on the two-stage clot assay
 - Limited availability in clinical laboratories, considered more expensive and more complex, this is debatable
 - FVIII: multiple CE-marked and FDA-approved kits available
 - FIX: two CE-marked and no FDA-approved kits available

One-Stage (aPTT) Factor VIII Activity Assay

& LabCorp

- Stage one is incubated for 2–10 minutes; during this time FVIIIa is generated
- Not sensitive to FVIII pre-activation
- Factors are present at non-physiological concentrations (highly diluted)
- Relatively insensitive to interference from heparin or lupus anticoagulants

- Conditions where results may not agree:
 - Discrepant hemophilia A^{1,2} and hemophilia B³
 - In the presence of certain inhibitors
 - Such as lupus anticoagulants
 - Post-infusion monitoring of rFVIII⁴, select EHL rFVIII and rFIX replacement therapies^{5,6}, FVIII and FIX gene therapies^{7,8}
- In some instances the OSA result is more accurate, while in others the CSA result is more accurate

1. Trossaert M, et al. *Haemophilia*.2014;20:550-8.; 2. Parquet-Gernez A, et al. *Thromb Haemost*.1988;59:202-6. 3. Kihlberg K, et al. *Haemophilia*. 2016;22(Suppl 4):70 ; 4. Barrowcliffe TW, et al. *Semin Thromb Hemost*.2002;328:247-56.; 5. St Ledger K, et al. *Thromb Haemost*. 2018;16:555-64.; 6. Kitchen S. et al. *Res Pract Thromb Haemost*. 2017;1 (Suppl 1):124-5 (abstract); 7. Rangarajan S, et al. *N Engl J Med*. 2017; 377:2519-2530.; 8. Robinson M, et al. *Blood 2018*; ASH Meeting Dec 2018.

EHL FVIII Replacement Products

Name	Manufacturer	Modification for Half-Life Extension	Approval Date
rFVIII-Fc (BDD) – ELOCTATE®/ELOCTA®	Bioverativ/SOBI	Fusion to Fc domain of IgG1	FDA Jun 2014 EMA Nov 2015
CSL627 (BDD) – AFSTYLA®	CSL Behring	Single-chain	FDA May 2016 EMA Nov 2015
Bax 855 (FL) – ADYNOVATE	Shire	20-kDa branched PEG	FDA Dec 2016 EMA Jan 2018
BAY 94-9027 (BDD) - Jivi®	Bayer	Site-specific 60-kDa PEG	FDA Aug 2018
N8-GP (BDtrunc PEGylated)	Novo Nordisk	40-kDa glycoPEGylation	BLA filed in US (Feb 2018) MAA filed in EU (Feb 2018)

BAY 94-9027 (Jivi[®]) – International Comparative Field Study: OSA Data

BAY 94-9027 (Jivi[®]) – International Comparative Field Study: CSA Data

Church N, et al. Haemophilia 2018;00:1-10.

EHL rFVIII Products – Field Study OSA/CSA Summary

Name	Manufacturer	One-Stage (aPTT) Assay	Chromogenic Assay
rFVIII-Fc (BDD) — ELOCTATE®/ELOCTA®1	Bioverativ/SOBI	V	V
CSL627 (BDD) – AFSTYLA ^{®2,3}	CSL Behring	all aPTT reagents ↓ (multiply OSA result x2)	V
Bax 855 (FL) — ADYNOVATE ⁴	Shire	V	V
BAY 94-9027 (BDD) - Jivi® ⁵	Bayer	APTT-SP $↓$, STA-PTT-A $↓$ CK Prest 个, Actin FS 个	V
N8-GP (BDtrunc PEGylated) ⁶	Novo Nordisk	APTT-SP ↓, STA-PTT-A ↓ TriniCLOT™ ↓	V

¹at upper acceptable limit of ± 30% RE \downarrow indicates under-recovery; \uparrow indicates over-recovery; \lor indicates acceptable recovery

1. Sommer, et al. Haemophilia (2014), 20, 294–300; 2. ST Ledger et al, Thromb and Haemost (2018), 16, 555–564 (abstract);; 3. AFSTYLA[®] Prescribing Information. CSL Behring; May 2016 ; 4. Turecek, et al. Haemophilia (2016), 22, 957–965; 5. Church N, *et al. Haemophilia* 2018;00:1–10; 6. Hansen M, *et al.* Poster PB241 presented at ISTH-SSC 2018, Dublin, Ireland.

Summary EHL FVIII Products

- Field study data available for all of the approved EHL FVIII products
- No single OSA aPTT reagent can measure all of the EHL FVIII products appropriately
- Available results to date suggest that most (if not all) EHL FVIII products (currently approved or in late-stage development) can be monitored using CSA

EHL FIX Replacement Products

Name	Manufacturer	Modification for Half-Life Extension	Approval Date
rFIX-Fc-ALPROLIX®	Bioveratif/SOBI	Fusion to Fc domain of IgG1	FDA Mar 2014 EMA May 2016
rIX-FS (CSL654)— IDELVION®	CSL Behring	Fusion to albumin	FDA Mar 2016 EMA May 2016
N9-GP – REBINYN®/ REFIXIA®	Novo Nordisk	40-kDa glycoPEGylation	FDA May 2017 EMA Mar 2017

rIX-FP (IDELVION[®]) – International Multicenter Field Study: OSA Data

LabCorp

rIX-FP – OSA and CSA Data¹

		n	Post Replenine	Spiked Replenine	Post Benefix	Spiked Benefix	Spiked Idelvion	Spiked Alprolix
Calculated FIX in spiked samples		-	-	50 IU/dL	-	70 IU/dL	60 IU/dL	60 IU/dL
	AFS	19	41.8	51.5	68.8	83	31.5	65.5
	AFSL	4	49	51.5	81.9	89.9	50.7	75.4
One stage methods Median (IU/dL)	CK Prest	5	51	55	76.5	86	32	48
	Pathromtin	4	42.7	46.5	57.6	66.5	52.6	46.9
	PTT Auto	3	46.3	50.7	80.5	82.6	52	40
	SynthaSIL	32	45	48.1	74	79.9	65.5	60.7
Chromogenic Median (IU/dL)	Hyphen	10	44	46.7	47.9	54.4	99.4	54.0
	Rossix	13	45	45	55	63	116	66.0

1. Kitchen S. et al. *Res Pract Thromb Haemost.* 2017;1 (Suppl 1):124-5 (abstract).

N9-GP (REBINYN[®]) – OSA Data

Adapted with permission from P.K. Holm, et al. The activity of GlycoPEGylated recombinant FIX (N9-GP) can be measured in two-stage chromogenic and onestage clotting assays. J Thromb Haemost. 2013;11(Suppl 2):828 (abstract and poster).

N9-GP – Multi-Center Qualification Study: OSA Data

Tiefenbacher S, et al. J. Thromb Haemost. 2017, Aug 3. doi: 10.1111/jth. 13787

N9-GP – Multi-Center Qualification Study: CSA Data

Tiefenbacher S, et al. J. Thromb Haemost. 2017, Aug 3. doi: 10.1111/jth. 13787

EHL rFIX Products – Field Study OSA/CSA Summary

Name	Manufacturer	One-Stage (aPTT) Assay	Chromogenic Assay
rFIX-Fc— ALPROLIX ^{®1, 2}	Bioveratif/SOBI	CK Prest (kaolin aPTT reagents) \downarrow	(√)
rIX-FS (CSL654)— IDELVION® ^{3, 4,5}	CSL Behring	CK Prest (kaolin aPTT reagents) ↓ Actin FS ↓ aPTT reagents with low lupus responsiveness ↓	(个)
N9-GP – REBINYN®/ REFIXIA® ^{6,7}	Novo Nordisk	most aPTT reagents 个 or ↓ Cephascreen √, SynthAFax √	V

↓ indicates under-recovery; ↑ indicates over-recovery; √ indicates acceptable recovery; () indicates only limited data are available

1. Sommer et al. Thromb Haemost 2014; 112: 932–40.; 2. ALPROLIX[™] Prescribing Information. Biogen Idec; March 2014. ; 3. St. Ledger K, et al. *Haemophilia*. 2016;22 (Suppl 4):58 (abstract and poster).; 4. Kitchen S. et al. *Res Pract Thromb Haemost*. 2017;1 (Suppl 1):124-5 (abstract); 5. IDELVION[®] Prescribing Information. CSL Behring; March 2016.; 6. Tiefenbacher S, et al. *J. Thromb Haemost*. 2017, Aug 3. doi: 10.1111/jth. 13787; 7. REBINYN[®] Prescribing Information. Novo Nordisk; June 2017.

Summary EHL FIX Products

- No single OSA aPTT reagent can measure all EHL FIX products appropriately
- Potential role of CSA assay for monitoring EHL FIX products remains to be demonstrated
 - Limited results available to date suggest that at least two of the three approved EHL FIX products (i.e. rFIX-Fc and N9-GP) can be successfully monitored with CSA
 - FIX CSA not widely used in clinical laboratory
 - Presently only two FIX CSA assay kits available (both CE marked, but neither is approved in the US for diagnostic use)

FVIII and FIX Gene Therapies

FVIII Gene Therapies

Name	Manufacturer	Gene Construct Modification	Clinical Development
BMN-270	BioMarin	BDD-FVIII	Phase III (Recruiting)
SPK-8011	Spark Therapeutics	BDD-FVIII	Phase I/II
SB-525	Sangamo Therapeutics/Pfizer	BDD-FVIII	Phase I/II
SHP654/BAX 888	Shire	BDD-FVIII	Phase I/II (Recruiting)

BDD, B-domain-deleted

FVIII Gene Therapy – OSA and CSA Data

 Adeno-associated virus serotype 5 [AAV5] vector encoding B-domain deleted human FVIII [AAV5- hFVIII-SQ]

- Consistent difference between OSA and CSA FVIII levels are observed
- FVIII OSA levels are ~ 1.65 x higher compared to CSA

FIX Gene Therapies

Name	Manufacturer	Gene Construct Modification	Clinical Development
AMT-061	Unicure	Padua FIX Variant; AAV5	Phase III
SPK-9001/PF- 06838435	Spark Therapeutics / Pfizer	Padua FIX Variant (FIX-R338L); bio-engineered AAV capsid	Phase III
SB-FIX	Sangamo Therapeutics	ZFN genome editing	Phase I/II

FIX Gene Therapy: OSA and CSA Data

- Two of the FIX gene therapies currently in development utilize a "Padua variant" (i.e. single R338L gain of function point mutation) which results in ~8 fold higher FIX activity compared to native FIX
- Poster presentation by Robinson M. at ASH Annual Meeting (01 Dec 2018) "Activity of a FIX-Padua Transgene Product in Commonly Used FIX:C One-Stage and Chromogenic Assay Systems following PF-06838435 [SPK-9001] Gene Delivery"

Non-Factor Replacement Therapies

None Factor Replacement Therapies

Name	Manufacturer	Target Mechanism	Approval Date
Emicizumab-kxwh - HEMLIBRA® (Haemophilia A)	Chugai Pharmaceuticals / Hoffman-La Roche	Chimeric bispecific humanised antibody - mimics FVIIIa by bridging FIXa and FX	FDA (Nov 2017) EMA (Feb 2018)
Concizumab (Haemophilia A and B)	Novo Nordisk	Anti-TFPI antibody - Inhibition of TFPI	Phase II (ongoing)
Fitusiran (Haemophilia A and B)	Alnylam Pharmaceuticals / Sanofi Genzyme	RNA interference therapeutic targeting to lower anti-thrombin (AT) levels	Phase III (ongoing)

TFPI – Tissue Factor Pathway Inhibitor

Emicizumab (ACE910)

- Humanized, bispecific, monoclonal antibody that bridges activated FIX and FX, replacing the function of missing activated FVIII
- Although, Emicizumab does not require laboratory monitoring during routine prophylactic dosing¹, situations may arise where laboratory assessment of hemostatic potential in patients is indicated (e.g. surgery or breakthrough bleed)

1. Interim Guidance Medical and Scientific Advisory Committee (MASAC) and National Hemphilia Foundation (NHF) on November 24, 2017 Graphics from Calatzis et al. (2018) poster presented at 62nd Annual Meeting of the Society of Thrombosis and Haemostasis, Vienna Austria

Important Differences between Emicizumab and FVIII(a)

FVIII(a)	Emicizumab
Requires activation by thrombin	Does not require activation
Binds to FIXa and FX only	Binds to FIX/FIXa and FX/FXa ¹ (human origin only)
Promotes PL binding; stabilizes FIXa active site; bridges FIXa to FX	Bridges FIXa to FX
Highly regulated (on/off, self-regulation)	Not regulated (no on/off)
Half-Life: ~12 h	Half-Life: 27.8 ± 8.1 d (667.2 ± 194.4 h) ²
Neutralized by anti-FVIII Ab	Not affected by anti-FVIII Ab

¹Lenting et al. (2017) Blood 130(23): pp 2463-68 ²HEMLIBRA FDA Prescribing Information, 11/2017

Effects on FVIII One-Stage Activity Assay

Emicizumab results in overestimation of FVIII activity in the one-stage FVIII activity assay

A. Adamkewicz et al. (2017), Poster presentation at Hemostasis & Thrombosis Research Society, Scottsdale, Arizona

B. Calatzis et al. (2018), Presented at 62nd Annual Meeting of the Society of Thrombosis and Haemostasis, Vienna Austria

Effects on FVIII Chromogenic Activity Assay

Hyphen Biomed

Emicizumab co-factor activity is measureable in chromogenic assays containing human FIXa and FX, but is not measurable in assays using bovine origin FIXa and FX

Adamkewicz et al. (2017), Poster presentation at Hemostasis & Thrombosis Research Society, Scottsdale, Arizona

33

LabCorp

Siemens Healthcare

Summary of Emicizumab Assay Interferences and Recommendations

- Existing data to date suggest that the presence of Emicizumab strongly effect aPTT-based coagulation assays^{1,2}
 - One-stage FVIII activity and Bethesda inhibitor assays
- aPTT-based coagulation assays must be avoided when assessing hemostatic potential in patients receiving Emicizumab therapy
- Due to long half-life of Emicizumab, this interference may persist for up to 6 months post treatment^{1,2}

Summary of Emicizumab Assay Interferences and Recommendations

- Emicizumab does not appear to cause interference in FVIII chromogenic assays that utilize bovine FIXa and FX reagents (i.e. FVIII chromogenic assay, Siemens Healthcare)
- Chromogenic (bovine FIXa and FX) FVIII Bethesda assay should be used when measuring FVIII inhibitors in patients on Emicizumab^{1,2,3}
- For measuring Emicizumab a chromogenic (human FIXa and FX) ^{1,2} or dilute one-stage assay with Emicizumab calibrator and controls can be used⁴

¹HEMLIBRA FDA Prescribing Information, 11/2017; ²MASAC Interim Guidance on Acute Bleed Management and Use of Laboratory Assays; November 24, 2017; ³Collins et al. (2018) Haemophilia 24: pp 344-347; ⁴Calatzis et al. (2018) Presented at 62nd Annual Meeting of the Society of Thrombosis and Haemostasis, Vienna Austria

- With the recent approval of EHL rFVIII and rFIX replacement products changes in how clinical laboratories monitor hemophilia replacement therapy are indicated
- Several of the EHL rFVIII and rFIX replacement therapies demonstrate aPTT reagent dependent recovery
- Existing data to date suggest that FVIII CSA may be suitable for monitoring EHL rFVIII replacement therapy
- For EHL rFIX additional data are required

- FVIII and FIX Gene Therapies
 - Insufficient data exist to determine whether OSA or CSA are more suitable for monitoring therapy
- Emicizumab Therapy
 - Traditional aPTT based FVIII OSA and Bethesda assays are not suitable for measuring hemostatic potential

Thank you