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Normal Distribution

The z-score has its origin to the Normal distribution, a symmetric bell
shaped curve (also known as Gaussian) that plays a major role in
statistics. It is denoted as X ∼ N

(
µ, σ2

)
, with µ being its mean and

σ its standard deviation.

For x ∈ (−∞,+∞)

f (x |µ, σ) =
1√

2πσ2
exp

{
−(x − µ)2

2σ2

}
E [X ] = µ Var [X ] = σ2

A tremendous formula capable to describe random phenomena more
often than any other existing distribution.

The Z ∼ N (0, 1) is known as the “Standard” Normal Distribution
and is related to the concept of z-scores
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Normal Distribution
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Normal Distribution
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Normal Distribution

Properties:

The Z ∼ N(0, 1) is called the standard Normal distribution and for
any other Normal, X ∼ N

(
µ, σ2

)
we have:

Z =
X − µ
σ

∼ N(0, 1) and X = µ+ σZ

The Normal is well known for its 68− 95− 99.7 rule, i.e.:

P(|X − µ| ≤ σ) = P(|Z | ≤ 1) = 0.6826

P(|X − µ| ≤ 2σ) = P(|Z | ≤ 2) = 0.9544

P(|X − µ| ≤ 3σ) = P(|Z | ≤ 3) = 0.9973

The above property establishes the well known alarming zones of
z-scores (ISO 17043 recommended by the ISO 15189 norm).
Specifically:

Orange alarm: when −3 < z-score ≤ −2 or 2 ≤ z-score < 3
Red alarm: when z-score ≤ −3 or z-score ≥ 3
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The Alarm Zones

The no alarm z-score distribution zone

IC: N(0,1)

-3 -2 0 2 3
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The Alarm Zones

The orange alarm z-score distribution zone

IC: N(0,1)

-3 -2 0 2 3
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The Alarm Zones

The red alarm z-score distribution zone

IC: N(0,1)

-3 -2 0 2 3
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The Alarm Zones

The z-score distribution

IC: N(0,1)

-3 -2 0 2 3
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Simulating IC performance

The z-score distribution

repeated sampling

IC: N(0,1)

-3 -2 0 2 3
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Simulating IC performance

0  alarm in  1 trial

repeated sampling

IC: N(0,1)
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Simulating IC performance

0  alarm in  2 trials

repeated sampling

IC: N(0,1)

-3 -2 0 2 3
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Simulating IC performance

0  alarm in  3 trials

repeated sampling

IC: N(0,1)

-3 -2 0 2 3
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Simulating IC performance

1 orange alarm in 4 trials

repeated sampling

IC: N(0,1)

-3 -2 0 2 3
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Simulating IC performance

1 red and  2  orange alarms out of 31 trials

repeated sampling

IC: N(0,1)

-3 -2 0 2 3
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Simulating IC performance

1 % red and 5 % orange alarms in 100 trials

repeated sampling

IC: N(0,1)

-3 -2 0 2 3
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Simulating IC performance

0.6 % red and 4.8 % orange alarms in 500 trials

repeated sampling

IC: N(0,1)

-3 -2 0 2 3
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Simulating IC performance

0.3 % red and 4.5 % orange alarms in 1000 trials

repeated sampling

IC: N(0,1)

-3 -2 0 2 3
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Simulating OOC performance

So if the lab is under the In Control (IC) status there is 0.27% chance
to get a red alarm and 4.28% chance to get an orange alarm.

What if though the lab is not “well aligned” with the IC distribution
established by the EQA organization?

A lab performing under Out Of Control (OOC) conditions would have
an elevated alarm rate. Both the magnitude and the sign of the
alarming z-scores can offer some valuable information of what is the
issue.

The two major OOC issues are related to:

Bias: how do we perform on average? (biased or unbiased?)

Uncertainty: how variable (uncertain) are we?
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Bias and Uncertainty
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Bias and Uncertainty

Bias and Variance aspects

Target value
Unbiased with large variance
Biased with small variance
Biased with large variance
Unbiased with small variance

P. Tsiamyrtzis & F. Sobas (AUEB-HCL) Evaluating z-scores Leiden, 9 November 2018 23 / 59



Simulating OOC (bias) performance

The z-score distribution

repeated sampling

IC: N(0,1)
OOC: N(1,1)

-3 -2 0 2 3
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Simulating OOC (bias) performance

3.3 % red and 13.8 % orange alarms in 1000 trials

repeated sampling

IC: N(0,1)
OOC: N(1,1)

-3 -2 0 2 3
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Simulating OOC (variance) performance

The z-score distribution

repeated sampling

IC: N(0,1)
OOC: N(0,2)

-3 -2 0 2 3
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Simulating OOC (variance) performance

2.9 % red and 12.2 % orange alarms in 1000 trials

repeated sampling

IC: N(0,1)
OOC: N(0,2)

-3 -2 0 2 3
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Simulating OOC (bias & variance) performance

The z-score distribution

repeated sampling

IC: N(0,1)
OOC: N(1,2)

-3 -2 0 2 3
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Simulating OOC (bias & variance) performance

4.2 % red and 12.4 % orange alarms in 1000 trials

repeated sampling

IC: N(0,1)
OOC: N(1,2)

-3 -2 0 2 3
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Multiple z-score analysis
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Multiple z-score analysis

The type I error refers to the case where we falsely raise an alarm
(while in reality everything works properly). As we saw earlier this is
α = 0.0428 or 0.0027 for the orange or red alarm respectively.

But what if we compare a small lab with say a single automate,
against a bigger lab with multiple automates? It is natural to expect
that the more the z-scores the more likely to get a false alarm.

In statistics, this is called the “multiple comparisons” problem and is
known to inflate the false alarm counts.

If we will consider that the tests are independent and we call Y the
number of false alarms that we have in N tests (z-scores of
automates), we get Y ∼ B(N, α), a Binomial distribution. Then, the
probability of at least one false alarm in N tests will be:

P(Y ≥ 1) = 1− P(Y = 0) = 1− (1− α)N
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Multiple z-score analysis
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Multiple z-score analysis

The probability of a lab to have at least one orange/red false alarm as a
function of the number of automates tested is:

Number of Orange Zone Red Zone
# automates False Alarm Prob False Alarm Prob

1 4.3% 0.3%
2 8.4% 0.5%
3 12.3% 0.8%
4 16.1% 1.1%
5 19.6% 1.3%
6 23.1% 1.6%
7 26.4% 1.9%
8 29.5% 2.1%
9 32.5% 2.4%

10 35.4% 2.7%
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Bonferroni Correction

Now lets assume that in lab/multicenter with several automates, the
EQA organization raises an alarm to the whole lab, if at least one of
the automates is giving an alarm.

Based on the previous plot, the higher the number of z-scores the
more likely to get a false alarm compared to a lab with less z-scores.

So, when we compare two labs with different number of z-scores, how
can we adjust the z-score alarm zones, so that the probability of false
alarm is approximately the same in both labs?

In statistics when we perform multiple testing we can adjust the
probability of type I error based on the number of tests performed.
Assuming independence among the N tests performed, a popular
adjustment is the Bonferroni correction where it adjusts the type I
error by dividing α with the number of tests performed (i.e. α/N).
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Bonferroni Correction

Fixing the orange & red based false alarm rates to be always at 0.0428 &
0.0027 respectively, the limits that we need to use, based on the number
of z-scores (automates) we test are:

Number of Orange Zone Red Zone
# automates Limits Limits

1 ±2.00 ±3.00
2 ±2.28 ±3.21
3 ±2.43 ±3.32
4 ±2.53 ±3.40
5 ±2.61 ±3.46
6 ±2.67 ±3.51
7 ±2.72 ±3.55
8 ±2.77 ±3.58
9 ±2.80 ±3.62

10 ±2.84 ±3.64
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Bonferroni Correction

Pay attention that the above proposal refers not to an individual
automate but to the whole lab/multicenter, where overall gets an
alarm, if at least one automate gets an alarm.

Also we need to pay attention to the evolution in time of the z-scores
for each automate, as consecutive alarms in an automate have
negligible probability of being actually a false alarm.

Apart from Bonferroni, other corrections are available in the
statistical literature, like:

Sidak Correction
Holm Bonferroni Correction
False Discovery Rate
...
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Evaluating z-scores in pairs
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Evaluating z-scores in pairs

For each z-score the [−2, 2] and [−3, 3] zones establish the alarm
regions (orange and red respectively)

When we study a pair of two z-scores it seems natural to extend the
alarm zone the square regions [−2, 2]× [−2, 2] and [−3, 3]× [−3, 3].

From a statistical perspective though, this is suboptimal, not only in
the case that the z-scores are correlated, but even when the two
z-scores are independent!

If Z1 is independent of Z2, then:

P((Z1,Z2) ∈ [−2, 2]2) = P(−2 ≤ Z1 ≤ 2)× P(−2 ≤ Z2 ≤ 2)

= 0.9545× 0.9545 = 0.9110

For correlated variables things become a lot worst when we use the
[−2, 2]2 and [−3, 3]2 boxes. One should make use of the Bivariate
Normal distribution to model pairs of Z-scores.
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Evaluating independent z-scores in pairs
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Bivariate Normal distribution (independent)
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Evaluating independent z-scores in pairs

Correlation = 0

z1

z 2

-3 -2 -1 0 1 2 3

-3
-2

-1
0

1
2

3

P. Tsiamyrtzis & F. Sobas (AUEB-HCL) Evaluating z-scores Leiden, 9 November 2018 41 / 59



Evaluating independent z-scores in pairs

Correlation = 0

z1

z 2

-3 -2 -1 0 1 2 3

-3
-2

-1
0

1
2

3

P. Tsiamyrtzis & F. Sobas (AUEB-HCL) Evaluating z-scores Leiden, 9 November 2018 42 / 59



Evaluating correlated z-scores in pairs
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Evaluating independent z-scores in pairs
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Bivariate Normal distribution (mild positive corr.)
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Evaluating independent z-scores in pairs
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Evaluating correlated z-scores in pairs
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Evaluating independent z-scores in pairs
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Bivariate Normal distribution (high positive corr.)
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Evaluating independent z-scores in pairs
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Evaluating independent z-scores in pairs

Correlation = 0.9

z1

z 2

-3 -2 -1 0 1 2 3

-3
-2

-1
0

1
2

3

P. Tsiamyrtzis & F. Sobas (AUEB-HCL) Evaluating z-scores Leiden, 9 November 2018 52 / 59



Evaluating correlated z-scores in pairs
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Evaluating z-scores in pairs

When evaluating pairs of correlated tests via their respective z-scores
the concept of an appropriate bivariate confidence zone can be quite
informative.

Bivariate and multivariate analysis methods used in Statistical
Process Control (e.g. Hotelling’s T 2) can be used to detect issues
which are not only related to the magnitude of the z-score but to the
correlation as well.
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Evaluating z-score history

P. Tsiamyrtzis & F. Sobas (AUEB-HCL) Evaluating z-scores Leiden, 9 November 2018 55 / 59



Longitudinal analysis of the z-scores

Using the history of z-scores one can:

Look for patterns in the time series plot of the z-scores, trying to
identify some erratic behavior like:

upward/downward trend
parameter change
mixture scenario
cyclic behavior
...

If for each survey we have two results, one can obtain a bivariate plot
of the historic z-scores.

Statistical Process Control tools can be used to detect transient shifts
or persistent trends and since we typically have short horizon of data
Bayesian methods are expected to be most appropriate.
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Conclusions

The EQA reports with z-scores should not be seen as binary entities:
No Alarm
Alarm

Useful information does exists, when one studies the z-scores with
respect to:

number of tests that performs
other correlated z-scores
historic evolution of the z-scores

EQA scores are snapshots of the quality in your lab, but IQC provides
a video of this story... Use state of the art tools to improve the ICQ
and EQA will become better.

Statistical Process Control tools can be very helpful not only for
identifying problems in the ICQ/EQA analysis, but also providing
feedback, useful to the root cause analysis.
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The End

Thank you!
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