

AUTOVALIDATION OF COAGULATION TEST RESULTS

Désirée Coen Herak Department of Laboratory Diagnostics University Hospital Centre Zagreb, Zagreb, Croatia

Automation of the total testing process

Lippi G and Simundic AM, Clin Chem Lab Med 2018; 56: 1660–6.

Postanalytical phase

AUTOVALIDATION

What is autovalidation?

Autovalidation is an algorithm-based process for the validation of test results that performs results checking according to established and verified criteria.

The most challenging task is to:

DESIGN A COMPREHENSIVE AUTOVALIDATION ALGORITHM

AUTOVALIDATION OF COAGULATION TEST RESULTS

Building and Evaluating the Autoverification of Coagulation Items in the Laboratory Information System Ying Zhao, Li Yang, Gaozhe Zheng, Yingmu Cai Clin Lab. 2014;60(1):143-50.

Autovalidation rates in an outpatient coagulation laboratory

P. FROOM, E. SAFFURI-ELIAS, M. BARAK

© 2015 John Wiley & Sons Ltd, Int. Jnl. Lab. Hem. 2015;37:380-5.

SCANDINAVIAN JOURNAL OF CLINICAL AND LABORATORY INVESTIGATION, 2016 http://dx.doi.org/10.1080/00365513.2016.1200135

2016;76:500-2.

SHORT COMMUNICATION

Autoverification of routine coagulation assays in a multi-center laboratory

Liselotte Onelöv^a, Elisabeth Gustafsson^a, Eva Grönlund^a, Helena Andersson^a, Gisela Hellberg^a, Ingela Järnberg^a, Sara Schurow^a, Lisbeth Söderblom^a and Jovan P. Antovic^{a,b}

^aDepartment of Coagulation Research, Institute for Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden; ^bDepartment of Clinical Chemistry, Karolinska University Hospital, Stockholm, Sweden

"Department of Coagulation Research, Institute for Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden; "Department of Clinical Chemistry, Karolinska University Hospital, Stockholm, Sweden

WHAT DO YOU NEED FOR THE IMPLEMENTATION OF AUTOVALIDATION OF COAGULATION TEST RESULTS?

Coagulation

analyzer

AUTOMATED RERUN and REFLEX TESTING

predefined instructions

SEND ALL TEST ORDERS, AUTOVALIDATE TEST RESULTS and SEND TEST RESULTS

The Ideal Laboratory Information System

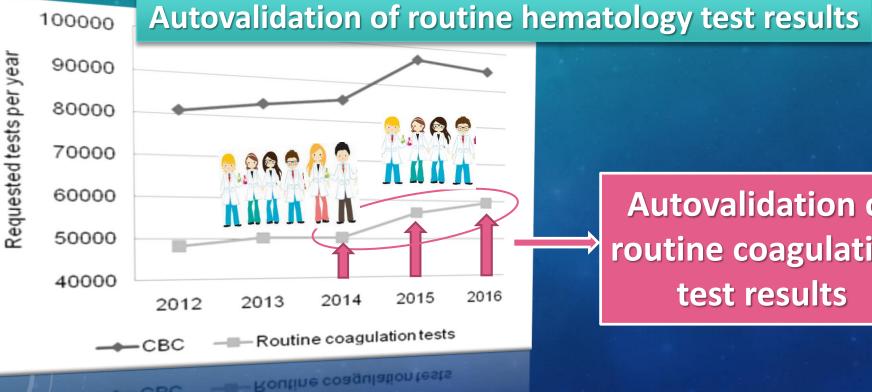
Jorge L. Sepulveda, MD, PhD; Donald S. Young, MD, PhD

(Arch Pathol Lab Med. 2013;137:1129-1140;

OUR AUTOVALIDATION STORY

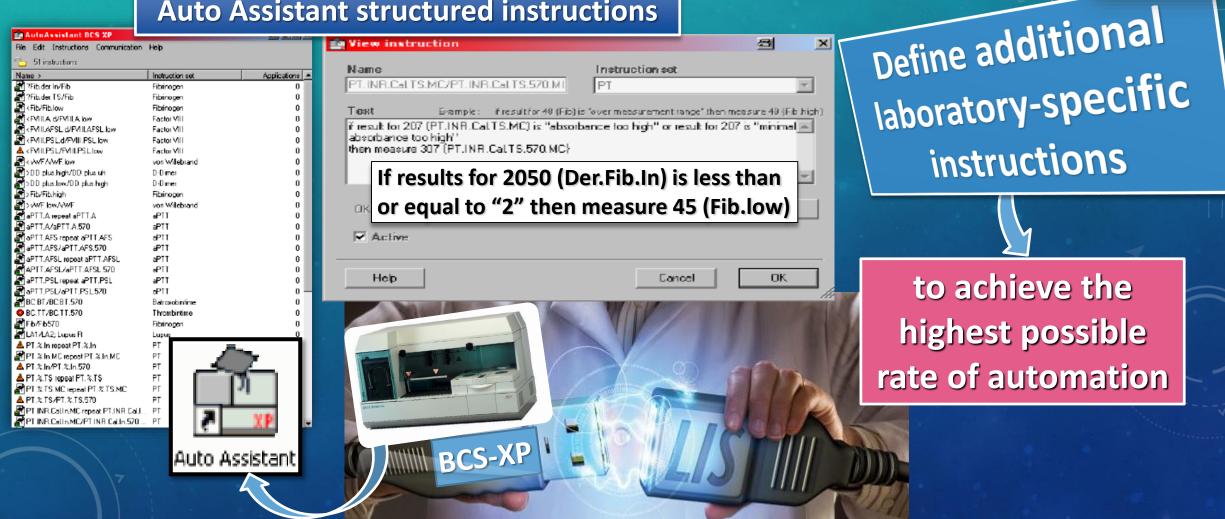
Implementation of the Autovalidation Algorithm for Clinical Chemistry Testing in the Laboratory Information System

Vladimira Rimac, MD,^{1*} Ivana Lapic, MD,² Kresimir Kules, MD,³ Dunja Rogic, PhD,² Marijana Miler, MD⁴

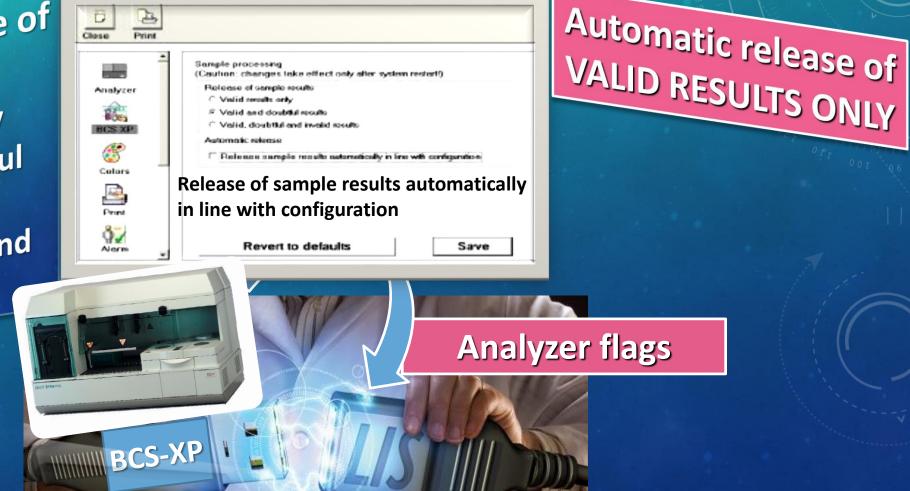

Laboratory Medicine 2018:00:1-7

implemented in **August 2014**

implemented in **December 2015**



PT-INR PT APTT **FIB** AT


DESIGNING A CUSTOM-MADE COAGULATION AUTOVALIDATION ALGORITHM

Auto Assistant structured instructions

invalid results

- results valid, doubtful and
- Automatic release of sample results: valid results only valid and doubtful

DESIGNING A CUSTOM-MADE COAGULATION AUTOVALIDATION ALGORITHM

AUTOVALIDATION ALGORITHM

AUTOVALIDATION RANGE

(panic values, measurement limit, values suspected for interferences)

ANALYZER FLAGS

LIS-BASED AUTOVALIDATION RULES

AUTOVALIDATION RANGE

range of values that can be reported automatically for a specific test

DELTA CHECK

- used to detect changes in the patient's conditions by comparing a patient's current result with the previous one in a defined time frame
- can be defined in different forms:
 - delta % change or delta difference
 - rate % change or rate difference
 - reference change value (RCV) of each selected laboratory test

 $RCV = (2)^{1/2} * Zp * (CV_{A}^{2} + CV_{I}^{2})^{1/2}$

Zp - number of SD; CV_A – analytical imprecision; CV_i - within subject biological variation

KZID

Ana Mlinaric*, Marija Milos, Désirée Coen Herak, Mirjana Fucek, Vladimira Rimac, Renata Zadro and Dunja Rogic

Autovalidation and automation of the postanalytical phase of routine hematology and coagulation analyses in a university hospital laboratory

Test (reported units)	Autovalidation range			Delta check, %/	Analyzer flag ^a /Additional criteria ^b
	Lower level	Higher level	Explanation	Time period, days	
PT (proportion)	0.14	NA		15/15	NA
PT-INR	NA	4.00		15/15	NA
APTT, s	22	40		13/15	In the presence of no reaction (flat curve) flag, no result nor flag is transferred to LIS
Fibrinogen, g/L inpatients	1.8	7.1	Derived fibrinogen is measured for inpatients by default. If derived fibrinogen is <2.0 g/L or if PT is doubtful, then modified Clauss method is measured	30/15	Flag is sent to LIS if: (a) derived fibrinogen is <2.0 g/L; (b) the result for derived fibrinogen is doubtful
Fibrinogen, g/L outpatients	1.8	7.1	Fibrinogen by modified Clauss method is measured for outpatients by default	30/15	NA
AT, %	50	125	Higher level was set as the highest calibrator value	24/15	NA
Π, s	10	30		15/15	NA

AUTOVALIDATION RATES

 great variations depending on the setting and implemented autovalidation criteria:

Patients population	Autovalidation	Delta check time
included	ranges	period
 Outpatients only: 96.9% Froom P et al. IJLH 2015; 37: 380-5. Both inpatients and outpatients: 55 – 85% Onelov L et al. Scand J Clin Lab Invest 2016; 76: 500-2. Both inpatients and outpatients: 65% Mlinaric et al. Clin Chem Lab Med 2018; 26: 454-62. 	<text></text>	<section-header></section-header>

AUTOVALIDATION ALGORITHM

AUTOVALIDATION RANGE

(panic values, measurement limit, values suspected for interferences)

ANALYZER FLAGS

DELTA CHECK

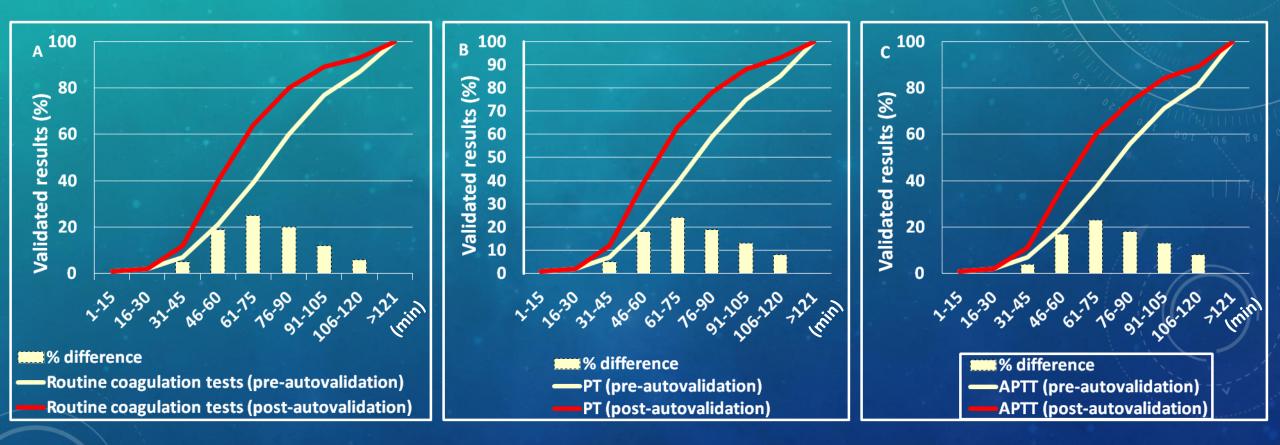
AUTOVALIDATION

MANUAL VALIDATION

VERIFICATION OF AUTOVALIDATION CRITERIA

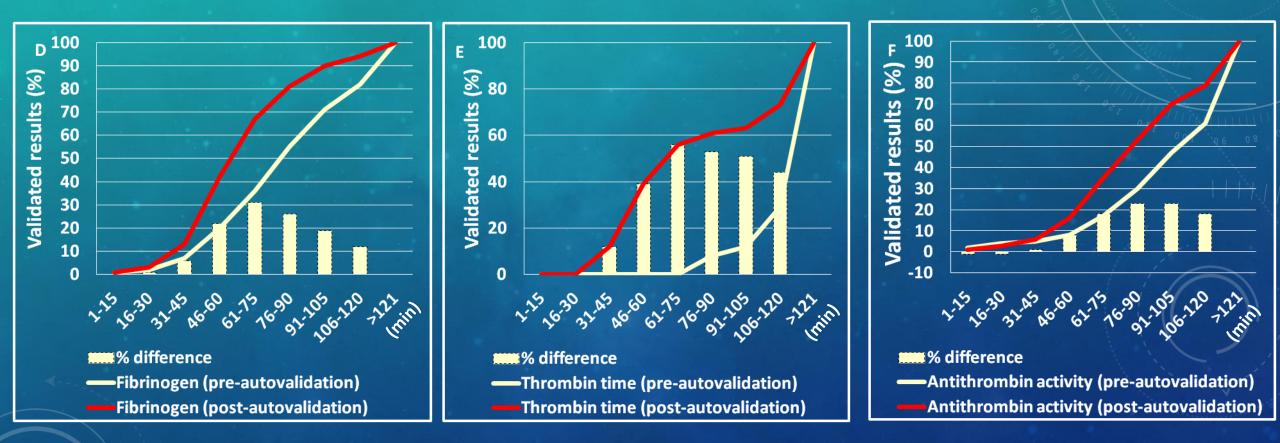
AUTO10-A

Autovertification of Clinical Laboratory Test Secults: Approved Guideline

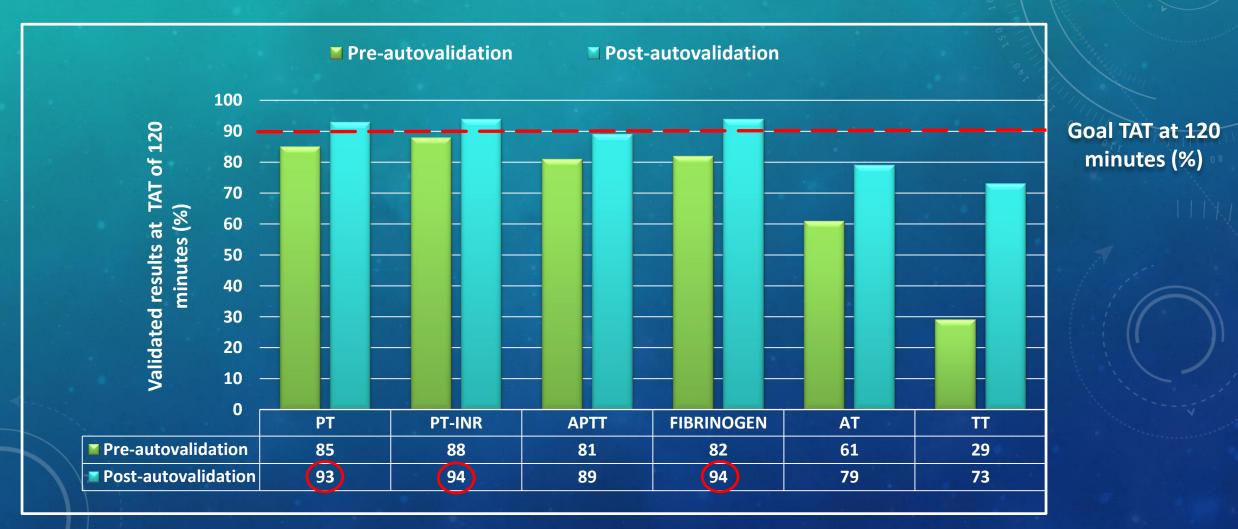

	Vol. 26 No. 32
ISBN 1-56238-620-4	Replaces AUTO10-P
ISSN 0273-3099	Vol. 26 No. 4
Autoverification of Clinical Laboratory Test Results;	
Approved Guideline	

AUTO10-A

Verification of correctly defined specifications


Verification was performed by a laboratory specialist on **2806** routine coagulation test requests (completed when 2000 samples were analyzed continuosly without autoverification of an erroneous result)

IMPROVEMENT OF TAT AFTER IMPLEMENTATION OF AUTOVALIDATION


Mlinaric A et al. Clin Chem Lab Med 2018; 26: 454-62.

IMPROVEMENT OF TAT AFTER IMPLEMENTATION OF AUTOVALIDATION

Mlinaric A et al. Clin Chem Lab Med 2018; 26: 454-62.

PERCENTAGE OF VALIDATED RESULTS AT TAT OF 120 MINUTES BEFORE AND AFTER IMPLEMENTATION OF AUTOVALIDATION

AUTOVALIDATION ALGORITHM

limit, values suspected for

interferences)

ANALYZER FLAGS

DELTA CHECK

Auto Assistant

COAGULATION ANALYZER

MANUAL VALIDATION

CONCLUSIONS

All published studies proved that autovalidation of coagulation test results reduce the number of manually validated test results and decrease TAT for selected coagulation analysis, improving at the same time laboratory work efficacy.

The establishment of autoverification rules and parameters is still unclear, with no clear-cut autoverification rules which could be used, resulting in great variations of autovalidation rates depending on the setting and implemented autovalidation criteria.

Autovalidation can be relatively easily implemented in any coagulation laboratory by using "custom- made" autovalidation criteria tailored to the specific clinicians and laboratory needs.

ACKNOWLEDGEMENTS

Ana Mlinaric Vladimira Rimac

Dunja Rogic

Renata Zadro

Marija Milos

Mirjana Fucek

Mr. Kresimir Kules for his valuable contribution to the autovalidation data extraction.

Thank you for attention!

