

Hemophilia: new developments in patient treatment

Karina Meijer UMCG, Department of Hematology/ Hemophilia Treatment Centre

10th ECAT participants' meeting, November 11, 2015

Current treatment

- Wild-type coagulation factor concentrate, discussion about inhibitor-genicity
- Modified concentrates (B domain deleted), issues with monitoring

- Safety and availability are a given
- Choices are limited to dosing schedules
 - Pharmacokinetics, optimal start of prophylaxis

New developments

Gene therapy

Longer acting clotting factors

Optimize treatment with current concentrates, pharmacokinetics

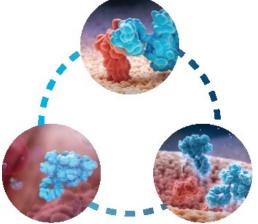
Longer acting

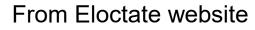
 Fusion, to interfere with clearance Fc fusion (registered, FVIII and FIX) Albumin fusion (registered, FIX) PEGylation (phase III data)

Longer acting

Fusion, to interfere with clearance
 <u>Fc fusion (registered, FVIII and FIX)</u>

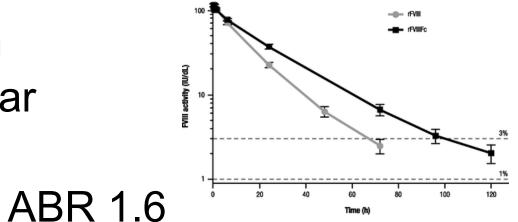
 Albumin fusion (registered, FIX)
 PEGylation (phase III data)




Longer acting clotting factors: Fc tail

• Fc part of IgG interacts with neonatal Fc recepter (FcRn), prolonging IgG halflife

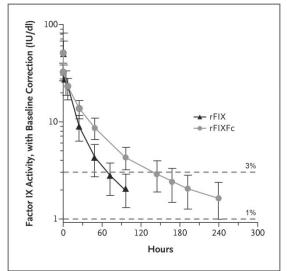
Same happens if Fc is fused with other protein!



A-LONG study

- rFVIIIFc, T1/2 19h
- 165 PTPs, ≥ 12 jaar

- Every 3-5 days ABR 1.6
 30% 2x/wk, 33% every 3d, 33% every 5d
- Every week ABR 3.6



- No unexpected AEs, no inhibitors – 2014: FDA approval
 - 2016: available NL as Elocta

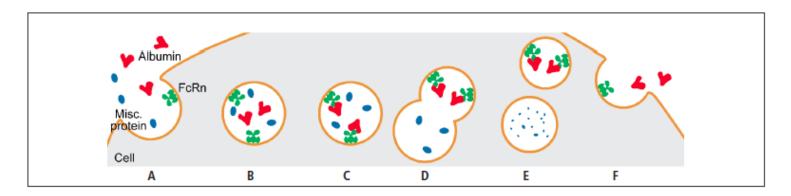
B-LONG study

- rFIXFc, T1/2 82h (≈ 3 days)
- 123 PTPs
- No inhibitors

• 2016: available in NL as Alprolix

Regimen	Start with	ABR
1x/wk, dose adjusted	50U/kg	3.0
100U/kg, interval adjusted	10 days	1.4
On demand	20-100U/dose	17.7

Powell, New Engl J Med 2013


Longer acting

 Fusion, to interfere with clearance Fc fusion (registered, FVIII and FIX) <u>Albumin fusion (registered, FIX)</u> PEGylation (phase III data)

Longer acting clotting factors: albumin fusion

- Attractive option, naturally occurring protein
 - Levimir insulin
- Works like Fc fusion: interacts with FcRn, 'recycles' clotting factor

Metzner, T&H 2013

Clinical data rIXFP

- 63 PWH, factor IX < 2%, 12-61 yr
- Prophylaxis 1x/ 7, 10 or 14 days
- T ½ 102h
- Trough 20% while on 40E/kg/ 1 wk
 12% while on 75E/kg/ 2 wks
- ABR 0 in 1x/wk, 1.08 in 1x/2 wk

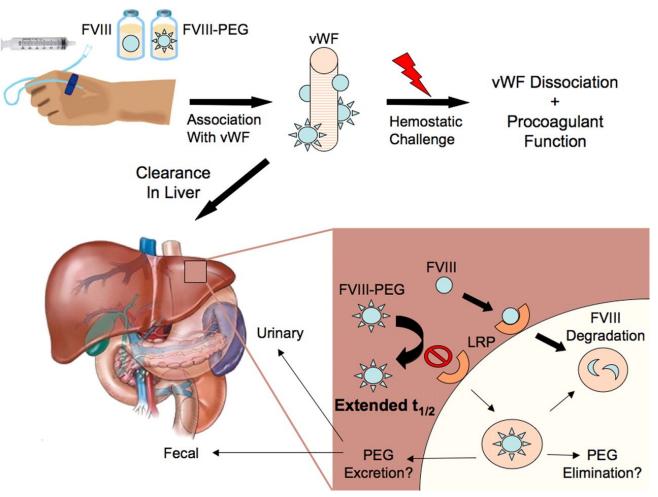
 \rightarrow what would happen if you lowered the dose..

Santagostino, Blood 2016

Longer acting

 Fusion, to interfere with clearance Fc fusion (registered, FVIII and FIX) Albumin fusion (registered, FIX) <u>PEGylation (phase III data)</u>

Longer acting clotting factors: PEGylation


Well known additive, no reported side effects: PEG interferon, laxative

- But no data for long term, iv use

- Polyethylene glycol polymers bind to specific sites of factor VIII
 - random binding led to interference with VWF binding, and reduced activity

Longer acting clotting factors: PEGylation

Pipe, Blood 2010

Current status

- Three FVIII molecules in phase III studies
 - Two B domain deleted, one full length
 - Outcomes reported in abstract form
 - In general: t ½ appr 18 h
 - Effective with increased interval
 - But: high doses, compared to Dutch standard
- FIX phase III published
 - ABR 1.0 with 40^E/kg/w, 2.9 with 10^E/kg/wk

Why better results for factor IX than for factor VIII?

- Fusion proteins are still stabilized by VWF
- T ½ of longer acting VIII molecules = T ½ of VWF, appr. 18 h

Gene therapy

- 2011 first published human results
 - 6 adult patients with severe haemophilia B
 - AAV8 vector, iv administration
 - Course over 6 months: 2-4% factor IX, no prophylaxis. Hepatitis requiring steroids.
- 2015 first trial open for Dutch subject
- 2016 WFH: avalanche of new data

Nathwani, New Engl J Med 2011

Hemophilia B, WFH

- All studies use in vivo approach with AAV virus (coagulation factor cassette in virus, iv administration)
- All have issues with immune respons

- Uniqure: n= 5, 1 nonresp, rest 3.1-6.7%
 AAV5, wild type hFIX
- Spark: n = 4, all resp, 21-42% FIX
 rAAV SPK 100, FIX-Padua

Hemophilia A, WFH

 Unexpected very good results from Biomarin trial

> AAV5, B-domain deleted factor VIII N=2, low dose, FVIII < 5% N=7, high dose, FVIII > 15% (4/7 > 50%)

 Immune response in first high dose patient, subsequently prophylactic steroids

Future directions

- Ex vivo transvection of autologous stem cells (phase 1 planned 2017/18)
- Gene editing: ZFN, talen, CRISPR-Cas9

ARTICLE

doi:10.1038/nature20134

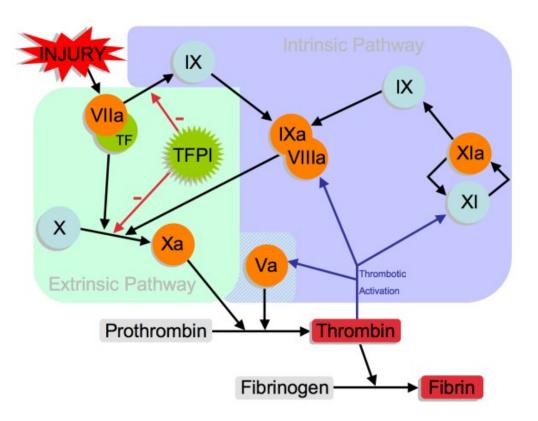
$CRISPR/Cas9 \beta$ -globin gene targeting in human haematopoietic stem cells

Daniel P. Dever¹*, Rasmus O. Bak¹*, Andreas Reinisch², Joab Camarena¹, Gabriel Washington¹, Carmencita E. Nicolas¹, Mara Pavel–Dinu¹, Nivi Saxena¹, Alec B. Wilkens¹, Sruthi Mantri¹, Nobuko Uchida³[†], Ayal Hendel¹, Anupama Narla⁴, Ravindra Majeti², Kenneth I. Weinberg¹ & Matthew H. Porteus¹

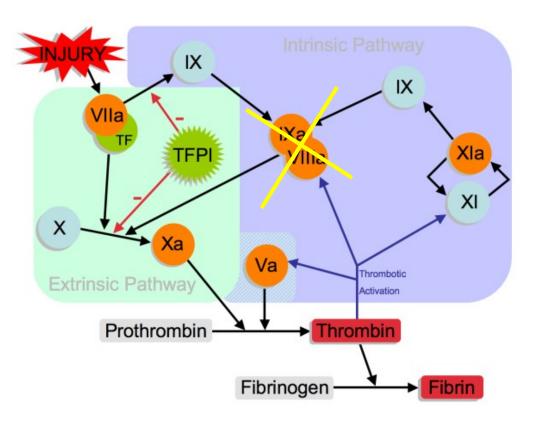
00 MONTH 2016 | VOL 000 | NATURE | 1

Non-clotting factor based approaches

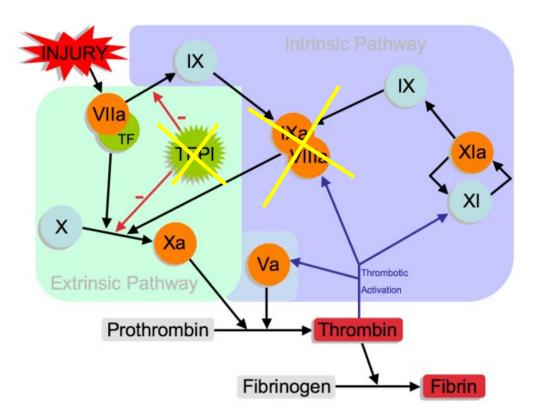
- Inhibition of TFPI
- Mimicry of cofactor function of VIII
- Reduction of antitrombin


Non-clotting factor based approaches

- Inhibition of TFPI
- Mimicry of cofactor function of VIII
- Reduction of antitrombin


Inhibition of TFPI

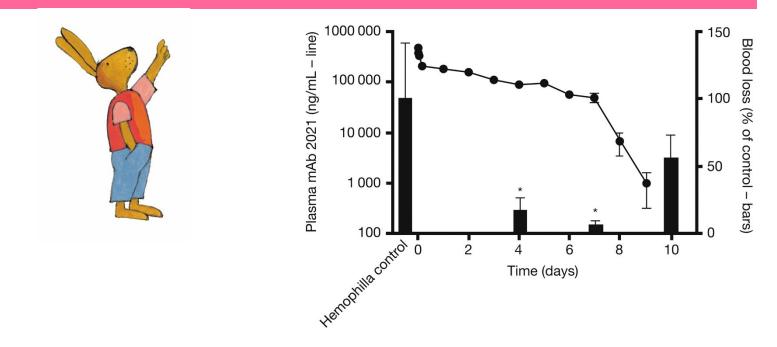
- TF/factor VII initiates coagulation, forms small amount of Xa. Negative feedback by TFPI
- Subsequent large amount of Xa is formed through IX/VIII
- Compensate absence of IX/VIII by inhibition of TFPI?


Inhibition of TFPI

- TF/factor VII initiates coagulation, forms small amount of Xa. Negative feedback by TFPI
- Subsequent large amount of Xa is formed through IX/VIII
- Compensate absence of IX/VIII by inhibition of TFPI?

Inhibition of TFPI

- TF/factor VII initiates coagulation, forms small amount of Xa. Negative feedback by TFPI
- Subsequent large amount of Xa is formed through IX/VIII
- Compensate absence of IX/VIII by inhibition of TFPI?



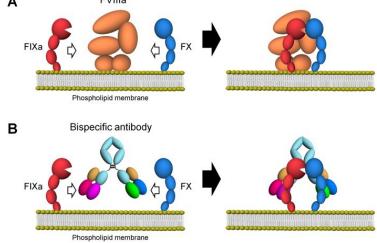
Popular concept

- Antibody to Kunitz 2 domain
 - Concizumab \rightarrow
- Oligonucleotide aptamer
 - Phase 1 unsuccessfull: increased bleeding, by interfering with clearance of TFPI
- Number of clinical studies starting to recruit

Concizumab

 Phase 1 data (incl 24 PWH): safe, allows for sc administration, indication of procoagulant effect

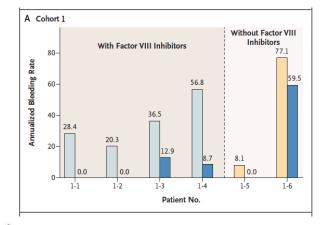
Hilden, Blood 2012; Chowdary JTH 2015


Non-clotting factor based approaches

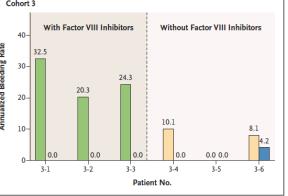
- Inhibition of TFPI
- <u>Mimicry of cofactor function of VIII</u>
- Reduction of antitrombin

Mimicry of cofactor function of VIII

 Anti-factor IXa/X bispecific antibody acts as factor VIII


- ACE910, sc administration, long T $\frac{1}{2}$
- Potentially effective in inhibitor patients

Sampei, PLoS One 2013


Clinical data for emicizumab

- 18 PWH, with or without inhibitors
- Sc administration, 1x/wk
- No safety issues

umcg

Shima, NEjM 2016

Non-clotting factor based approaches

- (Inhibition of fibrinolysis)
- Inhibition of TFPI
- Mimicry of cofactor function of VIII
- Reduction of antitrombin

ALN-AT3

- Small interference RNA, with modification to target hepatocytes
- Decreases expression of antitrombin gene
- Potentially applicable in all bleeding disorders, including inhibitors
- Phase 1 data:
 AT, ABR 2-4 in inhibitor patients, no signs of DIC

Clinical perspective, horizon of 3 years

- Routine clinical use of long-acting factor IX and intermediate-acting factor VIII
- TFPI inhibition accessible through clinical trials
- Gene therapy accessible for adult severe haemophilia B patients
- Rest of exciting new stuff will take longer

