

zafing

The diagnosis of von Willebrand Disease

ECAT participants meeting, 10 November 2015 Leiden Prof. Dr. Frank W.G. Leebeek ErasmusMC, Rotterdam, The Netherlands

Functions of Von Willebrand factor

- 1. Adhesion of platelets
- 2. Aggregation of platelets

Erasmus MC

zafing

3. Carrier of factor VIII

Mannucci PM, NEJM 2004

Von Willebrand factor – Erasmus MC

Mannucci, PM. NEJM 2004

Von Willebrand Disease (VWD)

- Most common inherited bleeding disorder
- Mucocutaneous bleeding symptoms
- Prevalence: 0.5-1%
- Autosomal dominant / recessive
- Caused by a deficiency / abnormality of von Willebrand Factor (VWF)
 - Type 1: quantitative disorder, reduced level of normal VWF
 - Type 2: qualitative disorder, abnormal VWF molecule
 - Type 3: quantitative disorder, no detectable VWF in circulation

Von Willebrand disease (VWD)

Prevalence 1:100

- Type 1 VWD: partial quantitative deficiency of VWF
- Type 2 VWD: dysfunction of VWF
 - 2A: abnormal VWF multimer pattern
 - 2B: ↑ platelet GP1b binding, abnormal multimers
 - 2M: ↓ GP1b or collagen binding
 - 2N: \downarrow FVIII binding \rightarrow low FVIII concentration
- Type 3 VWD: virtually complete absence of VWF

ISTH classification Sadler et al. JTH 2006

National study of moderate and severe von Willebrand disease in the Netherlands WiN study

- National study including children and adults from all HTCs
- Moderate or severe Von Willebrand Disease moderate: VWF 10-30 IU/dL or FVIII 20-40 IU/dL severe: VWF < 10 IU/dL or FVIII < 20 IU/dL
- All types of VWD
- Questionnaire
- Blood or saliva sample
- Inclusion period 2007 2009
- 837 patients included

von Willebrand disease: Symptoms

- Mucosal bleedings
 - Nose bleeds
 - Gingiva bleeds
 - Menorrhagia
- Easy bruising
- Bleeding after surgical interventions
 - dental extractions
 - tonsillectomy
- Bleeding after delivery (type 2/3)
- Joint bleeding

 800 patients with (moderate) severe VWD
Quantitative measurement of severity by Tosetto

Win study: >

 Data on bleeding, factor levels, and treatment

Bleeding Score

Bleeding Symptoms per Type VWD (VWF < 30%)

What are the current diagnostic problems in VWD

Erasmus MC

- What is a normal and what is an abnormal VWF level ?
- Diagnosis of VWF is based on which treshold VWF level ?
- What is the best VWF activity test to be used?
- How do we distinguish between type 3 and severe type 1 ?
- Do we need genotypic analysis in VWD?

Screening test for VWD

- Bleeding time
 - Lack of standardization, low reproducibility
 - Not sensitive enough for mild cases of VWD
 - Not predictive of bleeding tendency
- PFA-100®
 - High sensitivity for severe VWD
 - Sensitivity as low as 50% in mild VWD
 - High variability up to 20%

Diagnosis of VWD

Based on clinical and laboratory phenotype **Clinical phenotype**: bleeding score (ISTH BAT)

Laboratory phenotype:

First line tests:	
VWF:Ag	VWF antigen
VWF:RCo	Platelet-dependent VWF activity: VWF-to-platelet binding capacity
FVIII:C	Factor VIII coagulant activity

Diagnosis of VWD

Second line tests:

VWF:CB

- VWF collagen binding capacity
- Measures the ability of VWF to bind to collagen

Erasmus MC

- A3 domain of VWF
- High molecular weight multimers

VWF propeptide

Results depend on type of collagen used (I or III)

VWFpp

Multimer pattern

RIPA

VWF:FVIIIB

Third line tests:

Genetic analysis / mutation analysis

bjh guideline

The diagnosis and management of von Willebrand disease: a United Kingdom Haemophilia Centre Doctors Organization guideline approved by the British Committee for Standards in Haematology

Mike A. Laffan,¹ Will Lester,² James S. O'Donnell,³ Andrew Will,⁴ Robert Campbell Tait,⁵ Anne Goodeve,⁶ Carolyn M. Millar¹ and David M. Keeling⁷

- We recommend against the use of reference ranges or blood group-specific ranges for the diagnosis of von Willebrand disease (VWD) (2C).
- When investigating a patient with mucocutaneous bleeding a diagnosis of VWD can be made when von Willebrand factor (VWF) activity is <0.30 iu/ml (1B).

haematologica | 2013; 98(5)

REVIEW ARTICLE

Principles of care for the diagnosis and treatment of von Willebrand disease

Giancarlo Castaman,¹ Anne Goodeve,² and Jeroen Eikenboom,³ on behalf of the European Group on von Willebrand disease (EUVWD)

¹Department of Cell Therapy and Hematology, San Bortolo Hospital, Vicenza, Italy; ²Haemostasis Research Group, Department of Cardiovascular Science, University of Sheffield, United Kingdom; ³Department of Thrombosis and Hemostasis, Leiden University Medical Center, Leiden, The Netherlands

- 1. VWD diagnosis should be considered within the context of an appropriate personal and/or familial bleeding history. The use of a standardized questionnaire for history collection is advisable to appreciate the severity of the bleeding tendency.
- 2. Other common hemostatic defects should be excluded by performing a platelet count, APTT, PT and PFA-100 (or bleeding time).
- **3.** If personal and/or familial bleeding history is significant, VWF:RCo assay should be carried out at this stage. If not possible, VWF:Ag assay or VWF:CB assay should be performed. VWF:Ag < 3 U/dL suggests type 3 VWD. VWF:Ag and VWF:RCo and FVIII:C should be measured on the same sample to assess the presence of a reduced VWF:RCo/VWF:Ag ratio (a ratio < 0.6 suggest type 2 VWD) or FVIII:C/VWF:Ag (a ratio < 0.6 suggests type 2N VWD, to be confirmed by binding study of FVIII to patient's VWF).
- 4. If any of these tests is below 40 U/dL, the diagnosis of VWD should be strongly considered.

"Low VWF"

- Patients with bleeding symptoms
- VWF levels 30-60 IU/dL
- Low heritability
- Treatment with desmopressin and / or fibrinolysis inhibitors

De Jong & Eikenboom, JTH 2016

RECOMMENDATIONS AND GUIDELINES

Platelet-dependent von Willebrand factor activity. Nomenclature and methodology: communication from the SSC of the ISTH

I. BODO, * J. EIKENBOOM, † R. MONTGOMERY, ‡ J. PATZKE, § R. SCHNEPPENHEIM¶ and J. DI PAOLA, ** ON BEHALF OF THE SUBCOMMITTEE ON VON WILLEBRAND FACTOR

Journal of Thrombosis and Haemostasis, 13: 1345-1350

Abbreviation for VWF activity	Description
VWF:RCo	Ristocetin cofactor activity: all assays that use platelets and ristocetin
VWF:GPIbR	All assays that are based on the ristocetin-induced binding of VWF to a recombinant WT GPIb fragment
VWF:GPIbM	All assays that are based on the spontaneous binding of VWF to a gain-of-function mutant GPIb fragment
VWF:Ab	All assays that are based on the binding of a monoclonal antibody (mAb) to a VWF A1 domain epitope

Platelet-dependent VWF activity assays

VWF:RCo

Measures the capacity of VWF to interact with GP1b/IX complex in the presence of ristocetin

Plasma VWF agglutinates formalin fixed reagent platelets

Several commercial kits

However:

- Poor sensitivity (loss of detection 10 IU/dL)
- High coëfficiënt of variation
- Older assays were cumbersome
- Genetic variations affecting binding of ristocetin may lead to falsely abnormal values (p.D1472H)

Erasmus MC

Sadler, E Blood 2010; Bodó et al, JTH 2015

Other functional VWF assays

VWF:Ab

Measures binding of VWF A1 domain to a monoclonal antibody Good correlation with VWF:RCo

- Not really an activity assay
- May not detect some type 2M mutations

VWF:GP1bM

Uses gain-of-function GPIb fragments

No ristocetin required

Sensitive and precise

May be affected by human-to-animal-antibodies

Bodó et al JTH 2015; Bowyer et al Haemophilia 2016

Laboratory measurements

VWF:Ab (HemosILTM von Willebrand Factor Activity)

Assay based on latex particles conjugated to MAb directed against VWF GPIb binding site

Centrally measured at inclusion in the WiN study

VWF:RCo (Siemens BC von Willebrand reagent)

VWF:GP1bM (Innovance VWF Ac)

Patient characteristics (WiN study; n=658)

age, median (IQR)	44	29-57
male sex, n (%)	251	38.1
VWF:Ag [U/dL], median (IQR)	29	18-45
VWF:CB [U/dL], median (IQR)	22	7-51
FVIII:C [U/dL], median (IQR)	51	32-73
Bleeding score, median (IQR)	11	6-16

Results - measurements

Boender, J.et al. In preparation

Correlation between functional VWF assays

The different assays are highly correlated with each other

Lower detection limit is highest for VWF:RCo VWF:RCo VWF:GP1bM VWF:Ab 1 U/dL

THROMBOSIS AND HEMOSTASIS

von Willebrand factor propeptide and the phenotypic classification of von Willebrand disease

Yvonne V. Sanders,¹ Dafna Groeneveld,² Karina Meijer,³ Karin Fijnvandraat,⁴ Marjon H. Cnossen,⁵ Johanna G. van der Bom,^{6,7} M. Coppens,⁸ Joke de Meris,⁹ Britta A. P. Laros-van Gorkom,¹⁰ Eveline P. Mauser-Bunschoten,¹¹ Frank W. G. Leebeek,¹ Jeroen Eikenboom,² and the WiN study group

Blood. 2015;125(19):3006-3013

Erasmus MC

VWF propeptide

VWFpp measurement and VWF

Discrimination between severe type 1 and type 3

	Without (n =	Without VWFpp (n = 22)		With VWFpp (n = 15)	
Characteristic	No.	%	No.	%	Р
Age, y					.636
Median	2	2	35		
Range	2-6	60	4-65		
Male sex	9	41	7	47	.729
Blood group O	8	36	12	80	.009
VWFpp, U/dL					<.001
Median	C	0		72	
25%-75% IQR	0-	0-0		37-94	
VWF:Ag, IU/dL					<.001
Median	C	0		4	
25%-75% IQR	0-	0-1		2-4	
VWF:Act, U/dL					.036
Median	C	0		1	
25%-75% IQR	0-	0-0		0-3	
FVIII:C, IU/dL					<.001
Median	2	2		9	
25%-75% IQR	1-	1-3		8-13	
Multimers					
Absent	19	86	3	20	<.001
Abnormal	3	14	12	80	
BS					.025
Median	19	.5	14.0		
25%-75% IQR	11.3-2	11.3-23.8*		7.0-17.0	

Additional VWF assays

- RIPA assay
 - Low dose (<0.5 mg/ml) ristocetin induced platelet aggregation assay (type 2B or platelet type VWD)
- VWF: FVIII binding assay
 - To measure the ability of VWF to bind FVIII (type 2N)
- VWF multimer analysis

Multimer analysis

Fig. 3. Schematic representation of representative vWF multimer gels. Low-resolution gels show a distribution of multimers and are able to resolve broad patterns of small, intermediate, and large multimers. Higher resolution gels are needed to visualize satellite bands representing degradation products and flank main multimers. Various patterns are characterized predominantly by the main features of total intensity, distribution of sizes, and abnormalities of the satellite bands corresponding to different molecular mechanisms as discussed in the text.

Torres 2009

Multimer analysis

Budde U, Haemophilia 2008;14s:27-38

Genetics of von Willebrand disease

VWF gene: chromosome 12p13.31, 178 kb, 52 exons pseudogene on chromosome 22 highly polymorphous

Over 500 mutations identified

Springer, Blood 2014

Molecular and clinical profile of von Willebrand disease in Spain (PCM–EVW–ES): Proposal for a new diagnostic paradigm

	PCM-EVW-ES
VWF mutation detec- tion rate	
Unique mutations**	238
Туре 1	89.2 %
Type 2 (A, B, M, N)	100%
Туре 3	100%
VWD	n
Туре 1	138
Type 2A	109
Type 2B	35
Type 2M	38
Type 2A/2M	34
Type 2N	9
Туре 3	42
Polymorphisms	100 (34 in exon)

Thromb Haemost 2016; 115: 40–50

Erasmus MC

zafing

Novel mutation

Conclusions

- VWD is a heterogeneous disorder with varying bleeding phenotype
- Laboratory diagnosis is based on several tests
- Use of algorithm is necessary for correct diagnosis
- New test are in development, but need to be validated
- Increasing role of genetic testing of VWF