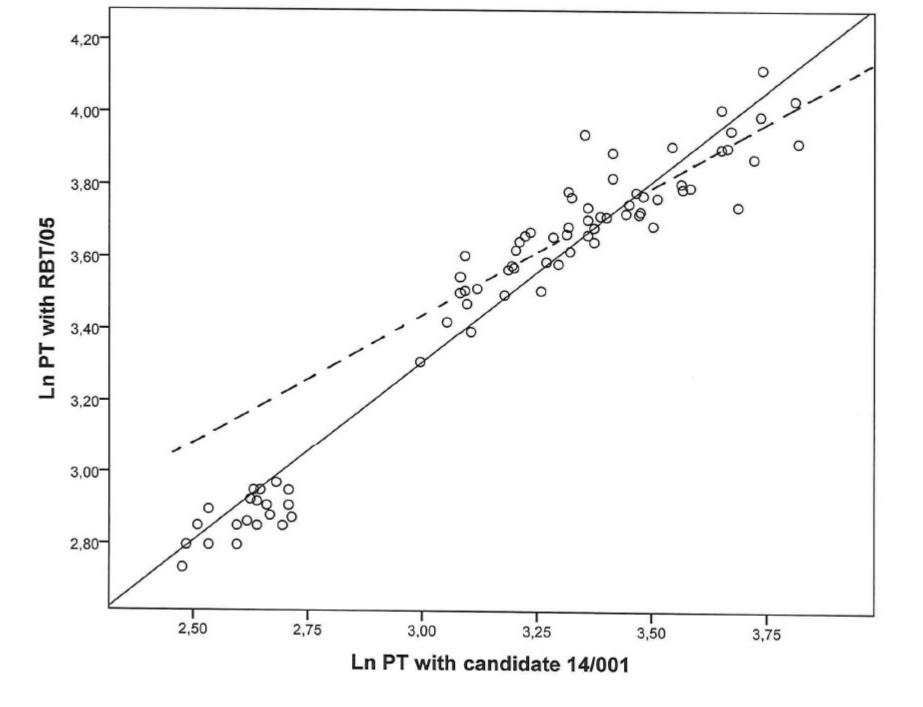
International Normalized Ratio for monitoring therapy with vitamin K antagonists

Ton van den Besselaar Consultant, Coagulation Reference Laboratory (CRL), Department of Clinical Chemistry and Laboratory Medicine Leiden University Medical Center

Subjects

ISI model and International Standards
Uncertainty of INR
Local calibration and commutability
Point-of-care INR monitors
Biological variation and precision
External Quality Assessment

Transform PT results to INR

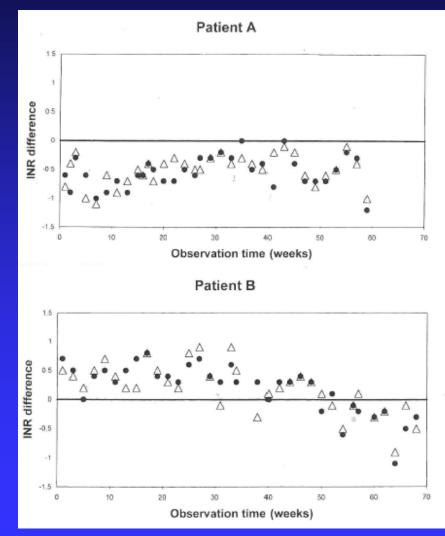

INR = (PT/MNPT)^{ISI}

MNPT: Mean Normal PT (geometric mean of healthy individuals' Prothrombin Times)

ISI: International Sensitivity Index

Hierarchy of Thromboplastin calibration

(human brain, com		(ISI = 1.0) dsorbed plasma)	First Int. Standard	
BCT/253	OBT/79	RBT/79	Second generation	
rTF/95		RBT/90	Third generation	
rTF/09		RBT/05	Fourth generation	
rTF/16		RBT/16	Fifth generation	
(recombinant hum	an)	(rabbit brain)		
Secondary standards				
Routine reagents				

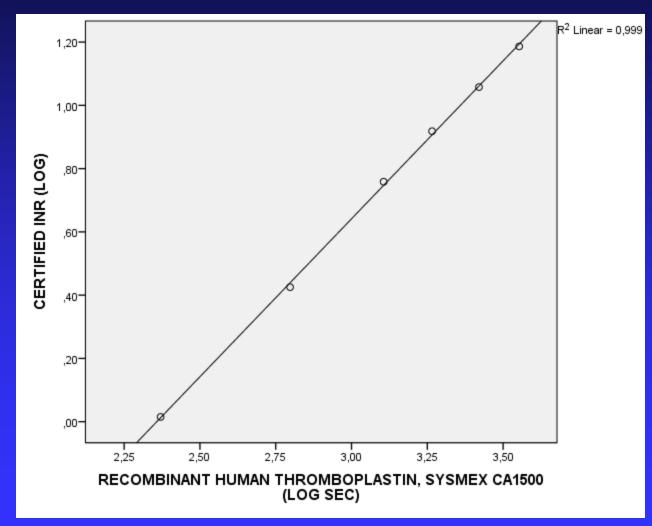

Mean ISI for new International Standards after exclusion of non-valid assessments

	rTF/16 (recombinant, human)		RBT/16 (rabbit brain)	
	Reference: rTF/09	Reference: RBT/05	Reference: rTF/09	Reference: RBT/05
Mean ISI	1.092 (n = 20)	1.138 (n = 13)	1.201 (n = 11)	1.212 (n = 18)
Between-lab CV (%)	2.1	8.0	4.6	4.6
Overall mean ISI	1.11		1.21	
Between-lab CV (%)	5.7		4.6	

Uncertainty of INR

PT test is influenced by multiple factors
 Thromboplastin reagents have different sensitivities to individual factors
 Between-laboratory error of ISI
 Imprecision of PT and MNPT

INR difference between Point-of-care and laboratory

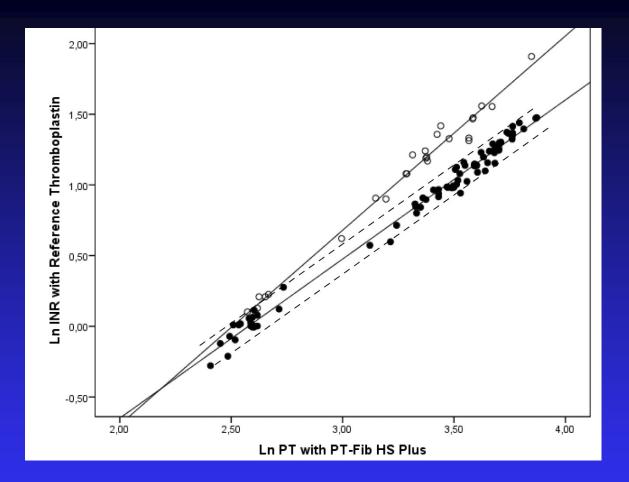


From: Tripodi A et al. Semin Vasc Med 2003;3:243-254

"Direct INR" method for local calibration

- Set of lyophilized or deep-frozen plasmas with certified INR values
- No need for MNPT determination with many (≥ 20) fresh normal plasma samples.
- INR can be calculated from regression line: Log INR (patient) = $a + b \times \log PT$ (patient)
- Be careful: commutability of certified plasma

'Direct' INR method for local calibration

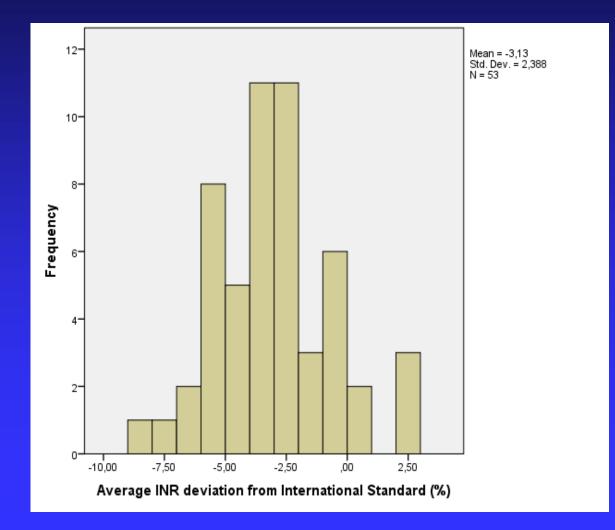


Commutability

Commutability is defined as the equivalence of the mathematical relationships between the results of different procedures for a 'reference material' and for representative samples from healthy and diseased individuals.

• For INR procedures, the 'reference material' is the set of certified plasmas.

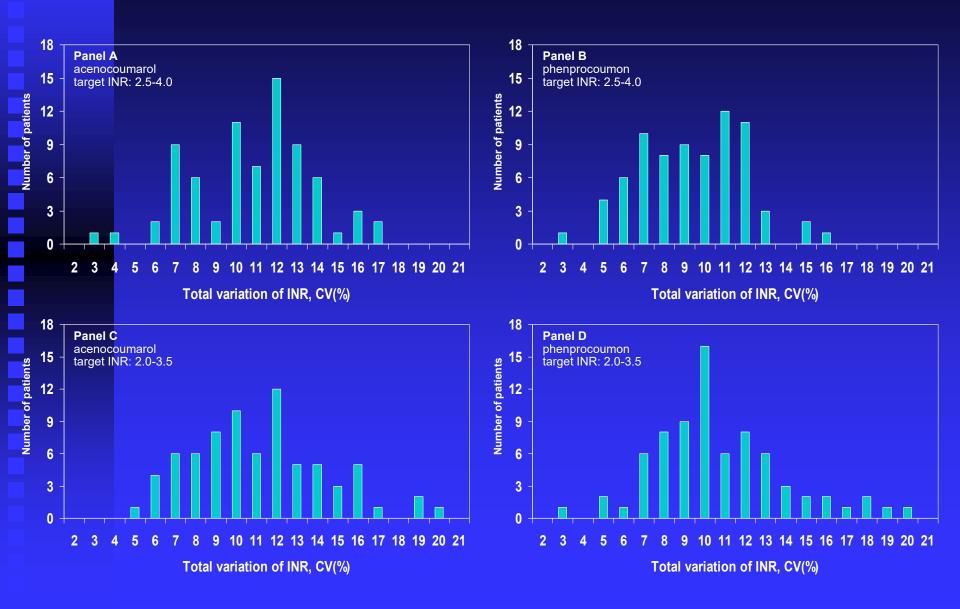
Vesper et al. Clin Biochem Rev 2007;28:139


Non-commutability of Freeze-dried Artificial Plasmas (J Thromb Haemost 2012;10:303)

Filled symbols: fresh native plasma samples of 20 normal and 60 VKA patients. Open symbols: 7 freeze-dried normal samples and 20 freeze-dried artificially depleted plasmas. Dotted lines: 95% prediction interval.

Point-of-Care (POC) INR monitors

- POC systems are calibrated by the manufacturer using split-sample procedure.
- Calibration equation is fixed and cannot be changed by the user.
- In the Netherlands each lot of test strips is validated by a Coagulation Reference Laboratory (CRL) collaborating with a group of Thrombosis Services.


Average INR deviation of 53 consecutive lots of test strips for CoaguChek XS

Biological variation and precision

- Analytical performance goals should be based on biological variation.
- Biological variation: within-subject and between-subject.
- Biological variation of INR in healthy population should not be used.
- Within-subject variation in long-term patients with constant VKA dose.

Total within-patient variation (CV_T) of INR

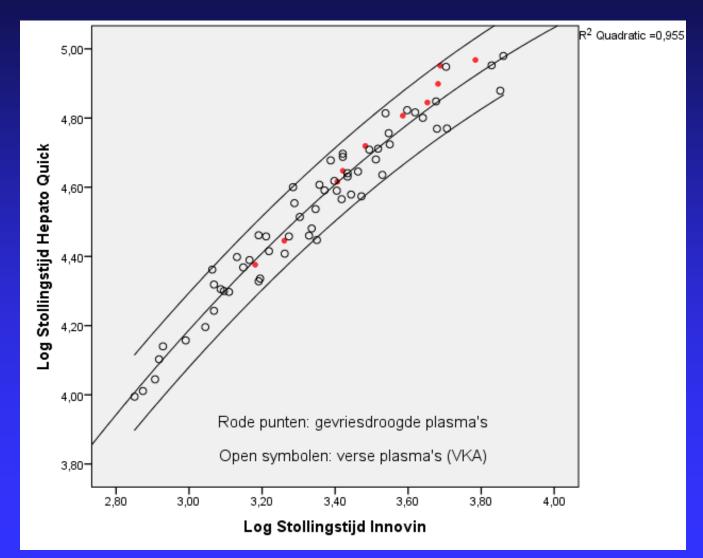
Average within-subject variation (CV, %) in long-term patients receiving a constant dose of vitamin K antagonist

	Acenocoumarol		Phenprocoumon	
	INR: 2.0-3.5	INR: 2.5-4.0	INR: 2.0 - 3.5	INR: 2.5 – 4.0
Hepato Quick*	10.9	10.5	10.4	9.1
CoaguChek XS**	10.4	10.2	8.8	8.1

* Van Geest-Daalderop et al. *Thromb Haemost* 2009;102:588-592

** Van den Besselaar et al. *Thromb Haemost* 2015;114:1260-7

Desirable INR precision goals (CV, %) according to Fraser et al. (*Ann Clin Biochem* 1997;**34**:8-12)


	Acenocoumarol		Phenprocoumon	
	INR: 2.0 - 3.5	INR: 2.5 - 4.0	INR: 2.0 - 3.5	INR: 2.5 – 4.0
Hepato Quick	5.4	5.2	5.2	4.5
CoaguChek XS	5.2	5.1	4.4	4.0

Desirable precision = 0.5 x average within-subject CV

External Quality Assessment (EQA)

- Control samples: lyophilized plasma
- Are lyophilized samples commutable for all laboratory methods?
- Are lyophilized samples commutable for laboratory methods and POC systems?

Scatterplot fresh VKA samples and lyophilized samples

Further work

- Assess commutability of lyophilized plasma samples (local calibration and EQA).
- Standardize the manual technique for International Standards and submit for establishment by SSC/ISTH.
- Develop an international network of reference laboratories for calibration of secondary standards.

Participants of multicenter study for replacement of International Standards

F. Angeloni ■ N.B. Binder ■ M. Byrne V. Chantarangkul **R**. Dauer B. Gudmundsdóttir K. Gustafsson J. Jespersen S. Kitchen C. Legnani

Hamilton Vienna Dublin Milano Melbourne Reykjavik Linköping Esbjerg Sheffield Bologna

Canada Austria Ireland Italy Australia Iceland Sweden Denmark U.K. Italy

Participants (continued)

R.A. Manning
M. Martinuzzo
O. Panes
V. Pengo
A. Riddell
S. Subramanian
A. Szederjesi
C. Tantanate
A. Tripodi
A. van den Besselaar
R. Zerback

London **Buenos** Aires Santiago Padova London Bangalore **Budapest** Bangkok Milano Leiden Mannheim

U.K. Argentina Chile Italy U.K. India Hungary Thailand Italy Pays-Bas Germany

Acknowledgements

Charmane Abdoel
Christa Cobbaert
Piëtte Deutz
Carla van Dyk
Mandy Quinten
Claudia van Rijn