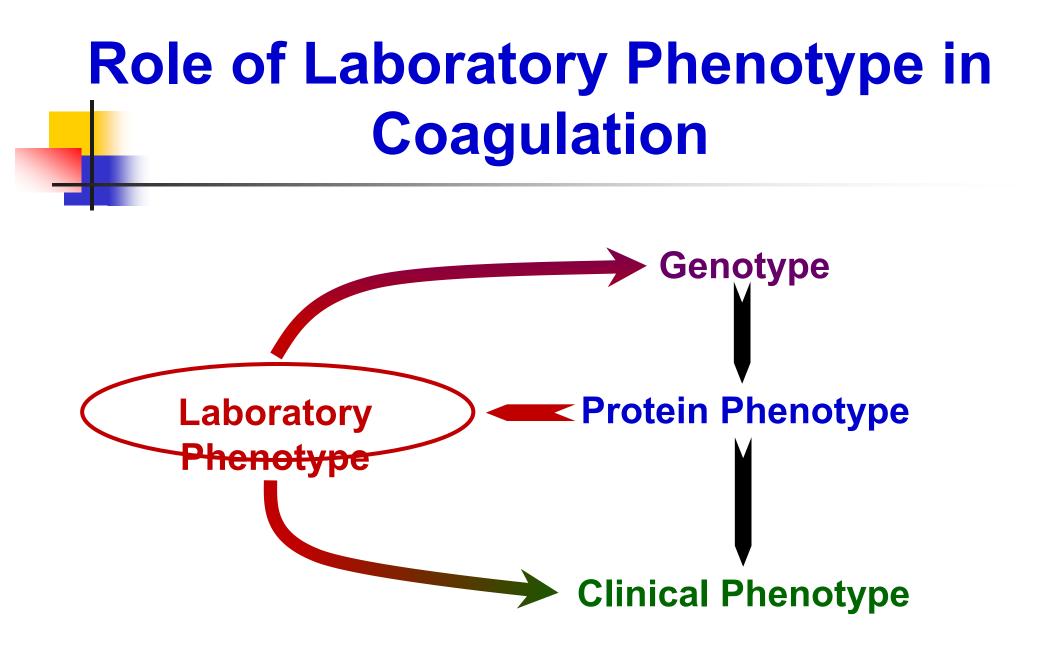
Laboratory Guidelines for Protein C, Protein S, Antithrombin and APC-R Testing

Richard A. Marlar Ph.D.

University of New Mexico

ECAT Meeting- Leiden, The Netherlands November 10, 2016

DISCLOSURES Richard A. Marlar, PhD


Financial Relationships

- Consultant:IL & Novo NordiskResearch:Stago & DMS Pentapharm
- Off Label Usage

None

Testing Guidelines for AT, PC, PS and APC-R Assays Outline

- Concept of Laboratory Phenotype
 - How it relates to Genotype & Clinical Phenotype
- General Recommendations
 - Pre-analytical & Post-analytical issues
- Protein C Testing
- Protein S Testing
- Antithrombin Testing
- APC-Resistance Testing
- Algorithms for Testing

General Recommendations for PC, PS, AT and APC-R Testing

General Recommendations for AT, PC and PS Assays

Pre-Analytical Variables must be controlled:

- Correct timing with respect to patient history
- Testing during pathology or treatment
- Specimen collection, processing & storage

Post-Analytical Processes must be appropriate:

- Interpretation of result is a COMPARATIVE DECISION-MAKING PROCESS
- Correct Reference Interval
- Repeat abnormal results

Protein C Assays

Major Issues Associated with Testing

Protein C Deficiency Quantitative and Qualitative Defects

- Quantitative Defects (Type I):
 - Major gene defect
 - Decrease of both activity and antigen
- Qualitative Defects (Type II):
 - Due to point mutation
 - Decrease of activity with normal antigen
- Type II sub-types:
 - Type IIa- defect in activation or active site
 - Type IIb- defect in cofactor or PL binding

Protein C Clotting & Chromogenic Assays

PC Clotting Assay:

- Measures activation, activity & cofactor/PL interactions
- Clotting time proportional to PC concentration
- Assay reagents vary significantly- may affect results

PC Chromogenic Assay:

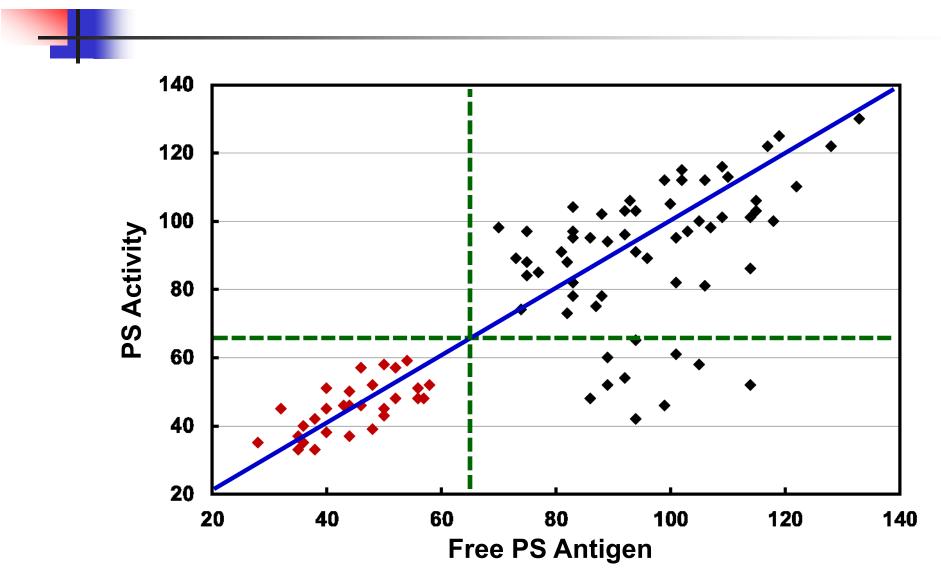
- Measures activation & enzymatic activity only
- Generated color proportional to PC concentration
- Less interfering effects

Type II Protein C Deficiency Genetic Defects in Function

- 8-10% of Protein C deficiencies are Type II deficiencies.
- Clotting Assay: Most Type II defects are identified.
- Chromogenic Assay: 85-90% of Type II defects are identified.
 - Will miss defects in cofactor and PL binding.

Diagnosis of PC Deficiency Testing and Genetic Defects

	Clotting Assay	Chromogenic Assay	PC Antigen
Normal	96%	98%	95%
Type I	42%	46%	40%
Type IIa	58%	53%	98%
Type IIb	48%	89%	94%

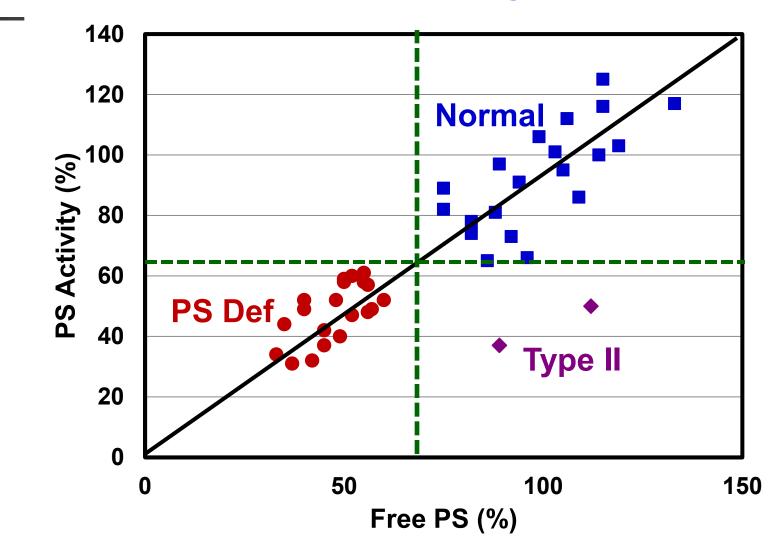

Protein S Assays

Major Issues Associated with Testing

Clinical and Laboratory Aspects of Protein S

- Complex interactions and functions of Protein S
- Deficiency classification is also complex
 - Type I, Type II and Type III
- 3 Types of Assays
 - Protein S Activity Assay: Clot Based
 - Free Protein S Antigen Assay: Monoclonal Antibody
 - Total Protein S Antigen Assay: Polyclonal Antibody

Spurious Protein S Activity Levels in Non-PS Deficient Patients


Protein S Activity Assays Assay Inconsistencies

False low PS activity compared to Free PS Ag

- Assay #1:
- Assay #2
- Assay #3
- Assay #4

- 11% of samples14% of samples16% of samples
- 19% of samples
- Unknown Cause of Decreased PS Activity
- On repeat, PS Act will normalize to Free PS value

Comparison of Free PS Levels with PS Activity

Issues for Free PS Antigen Assay

- Free PS Antigen usually correlates with PS activity
- Potentially will miss Type II PS molecules (dysfunctional molecule)
- Estimated 1-3% of Protein S deficiencies

Issues for Total PS Antigen Assay

- Poor correlation of Total PS Assay with PS Act or Free PS Ag assays.
- Will miss numerous PS deficiencies.
- Increased cost with little or no additional clinical or mechanistic information.

Antithrombin Assays

Major Issues Associated with Testing

Diagnosis of Antithrombin Deficiency Type I and Type II Defects

Quantitative Defects (Type I):

- Major gene defect- decreased activity & antigen (Ratio 0.7-1.3)
- Both thrombin & FXa assays detects Type I deficiencies

Qualitative Defects (Type II): (May be Difficult to Diagnose)

- Point mutation- decreased Act & normal Ag (Ratio 0.3-0.7)
- Values can be different between thrombin and Factor Xa
- Can lead to wrong diagnosis of "normal"
- Multiple sub-types

Laboratory Assays for Antithrombin

- Both Activity and Antigenic AT assays available
- Activity assays are chromogenic methodology
- Activity based using one of two enzymes
 - Factor Xa
 - Thrombin (human or bovine)
- Majority use heparin
- Assay Variables: incubation time, enzyme, buffers

Comparison of Enzymes for Antithrombin Deficiencies Enzyme and Antigen Levels

	Human Thrombin	Bovine Thrombin	Human FXa	AT Antigen
Normal	115%	99%	101%	102%
Type I	69%	52%	54%	54%
Type II- Reactive Site		67%	93%	87%

Cooper, et al IJLH 33:227, 2011 Marlar & Gausman, IJLH 36:289, 2014

APC-Resistance Assays

Major Issues Associated with Testing

APC-Resistance Mechanism

- Inability of patient's plasma to be inhibited by Activated Protein C (APC)
- Major genetic mechanism is: Factor V_{Leiden}
- Other mechanisms of APC-R:
 - Elevated factor VIII levels
 - Elevated factor II and fibrinogen levels
 - Decreased PS levels
 - Minor genetic mutations in factor V

Factor V_{Leiden} **Genetic Mechanism**

- Molecular Cause: Mutation of an APC cleavage site in Factor V
- Mutation Site: (DNA and protein sequence)
 Amino Acid: Arg₅₀₆ GIn₅₀₆
 Nucleotide: CGA CAA
- Molecular Function:

APC cleaves Arg_{506} - Gly_{507} bond. Mutation: Gln_{506} - Gly_{507} bond not cleaved. FVa remains active generating more thrombin.

APC-Resistance Clotting Assay 2nd Generation Assay

- Patient plasma diluted in FV def plasma to make specific.
- Either APTT or RVVT based assay.
- Add APC and saline to diluted plasma.
- Perform clotting assay.
- Normalized ratio of APC/saline clotting times determined.

Results:

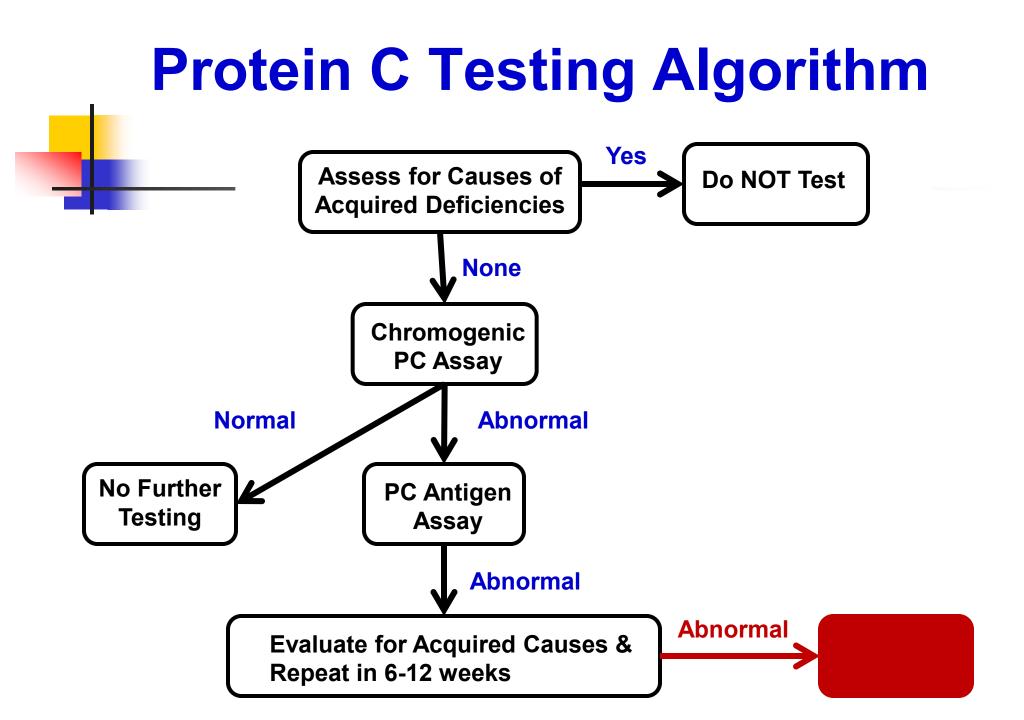
- Wild type factor V ratio: >2.0
- Factor V_{Leiden} ratio: <2.0</p>

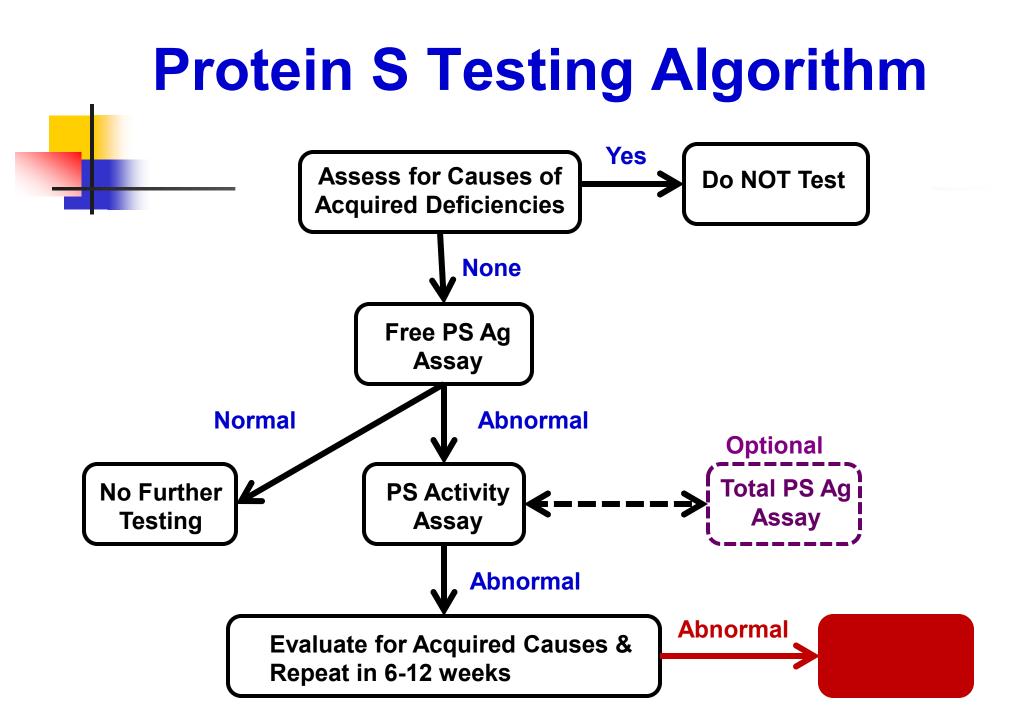
APC-R and Factor V_{Leiden} **Second Generation Test**

	APC-R Test Positive	APC-R Test Negative
FV _{Leiden} DNA <i>Positive</i>	123	0
FV _{Leiden} DNA <i>Negative</i>	0	985

Summary of Recommendations

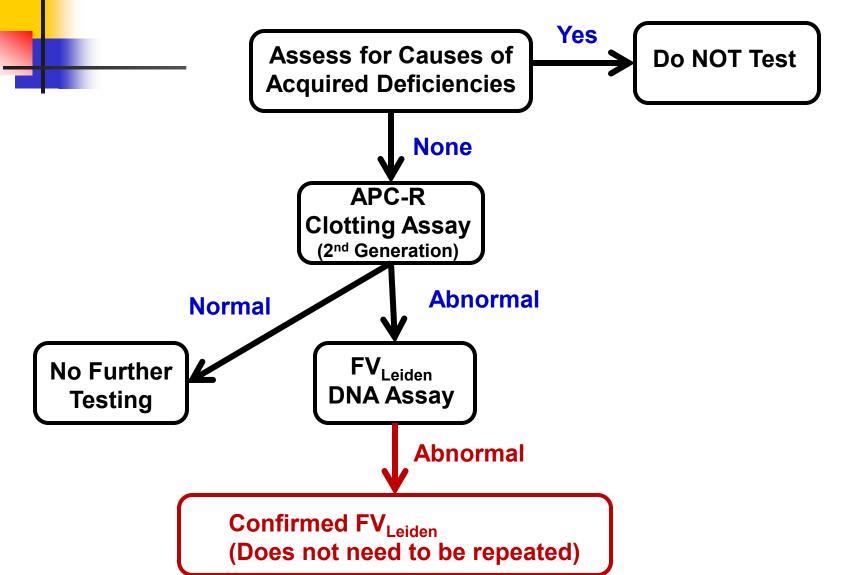
PC, PS, AT and APC-R Testing Cost Effective Protocol


- Protocol should be based on:
 - Prevalence of deficiency
 - Understanding of the mechanisms
- Must know the status of patient
- Draw & process the samples properly
- Know the assay limitations
 - What is the measured molecule or domain?
 - What interfering substances affect results?
- Use appropriate assays:
 - Activity, Antigen or Genetic


PC, PS, AT and APC-R Testing: Recommendations

- All test kits measure the same analyte.
- However, not all measure analyte the same.

So.....


- Question an assay result:
 - If borderline normal.
 - Has variability on duplicates or repeating.
- Repeat questionable results.

Antithrombin Testing Algorithm Yes Assess for Causes of **Do NOT Test Acquired Deficiencies** None **AT Activity** Assay **Abnormal Normal No Further AT Antigen** Testing Assay **Abnormal Abnormal Evaluate for Acquired Causes &** Repeat in 6-12 weeks

APC-R Testing Algorithm

Will Deficiencies Be Missed With Proposed Protocols?

Protein C Assays:

- Chromogenic:
- Clotting:
- Antigen:

1.2% of deficiencies

0.5% of deficiencies

14.0% of deficiencies

Clotting Assay is more costly and more interfering substances

Protein S Assays:

- Free Protein S Ag: 1.5% of deficiencies
- Protein S Activity: 0.7% of deficiencies
- Total Protein S Ag: 18.0% of deficiencies

PS Activity Assay has 10-15% false positive and more costly

Will Deficiencies Be Missed With **Proposed Protocols?**

- Antithrombin Assay:
 - Bovine Thrombin: 0.5% of deficiencies
 - Factor Xa:

0.7% of deficiencies

Human Thrombin: 2.5% of deficiencies

Human Thrombin has interference by Heparin Cofactor II

APC-Resistance Assay:

- 2nd Generation method: <0.2% of mutations</p>
- 1st Generation method: 6% of mutations

1st Generation has too many interfering substances

Testing Panel for Thrombophilia Initial Tests and Reflex Tests

- Protein C-
 - If abnormal:
- Protein S-
 - If abnormal:
- Antithrombin-
 - If abnormal:
- APC-R-
 - If abnormal:

- PC Chromogenic Assay PC Antigen Assay
- Free PS Antigen Assay PS Activity Assay
- AT Activity Assay AT Antigen Assay
- 2nd Generation Assay FV_{Leiden} DNA Analysis

Testing for Thrombophilia Bottom Line

- Must know your patient
- Must have specimen & sample integrity
- Use the appropriate initial assay
- Must know the assay limitations
- NO assay is 100% diagnostic
- Must know Reference Interval
- Must confirm abnormal results

Questions??

