

Biological variation and quality control

Moniek P.M. de Maat

Variation in variable A

time

Variation in variable B

Total variation = inter-individual variation + intra-individual variation + analytical variation

Sources of analytical variation

Pre-analytical variation:

Subject-related: fasting state, exercise / stress, posture

- Sample collection and handling: type of sample,
 anticoagulant, tourniquet, transport time, centrifugation
- Analytical variation:
 - Random
 - Systematic (operators, reagents, apparatus, etc.)

Reducing analytical variation

- Limit pre-analytical variation
- Limit analytical variation
- Multiple measurements

What should the level of analytical variation be?

Strategies to set quality specifications

- Assessment of the effect of analytical performance on specific clinical decision-making.
- Assessment of the effect of analytical performance on general clinical decision-making.
- Professional recommendations.
- Quality specifications laid down by PT or EQAS organisers.
- Published data on the state of the art.
- Biological variation

Introduction

Biological variation can help to determine Quality specifications of the assays:

- Inter-individual variation (between, CVg)
- Intra-individual variation (within, CVw, CVi)

- Monitoring
- Diagnosis

Components of variation

intra-individual variation +

analytical variation

How to express variation:

■ Variance SD²

■ CV (SD / mean) * 100%

Quality specifications best based on biological variation

- Imprecision < 0.5 CV_I
- Bias < $0.25 \cdot [CV_1^2 + CV_G^2]^{\frac{1}{2}}$
- Total error < 1.65 0.5 CV_1 + 0.25 $[CV_1^2 + CV_G^2]^{\frac{1}{2}}$
- Other specifications based on biology include for reference methods and the allowable difference for two analysers in the same laboratory.

Effect of analytical performance in general terms

Formulae using biological variation data look complex

BUT

- directly related to use of tests clinically
- many different applications
- many data on biological variation
- widely supported by professionals

Analytical Quality Specifications (AQS)

Performance goal	Imprecision (CV _A) (monitoring)	Imprecision (CV _A) (diagnostic testing)
Minimum quality	CV _A < 0.75 CV _W	CV _A < 0.87 CV _T
Desirable quality	$CV_A < 0.50 CV_W$	CV _A < 0.58 CV _T
Optimum quality	CV _A < 0.25 CV _W	CV _A < 0.29 CV _T

The effect of imprecision on test result variability

Effect of negative bias

Effect of bias on reference values

Generation of estimates of components of variation

- select a small number of reference individuals and apply exclusion criteria
- take samples at intervals minimizing pre-analytical sources of variation [subject preparation and sample collection and handling]
- store as to ensure stability
- analyze in random duplicate in one batch
- look for outliers [complex]
- use random nested effects ANOVA to determine
 CV_A, CV_I, CV_G

Study design

- 40 healthy subjects living or working in Rotterdam region
- 15 blood samples were taken during 1-year from each participant (between January 2005 and December 2006)

A total of 520 samples collected on 197 different days

Standardization

- Pre-analytical
 - Blood collection while sitting and resting
 - Right antecubital vein
 - Participants were allowed to have a light breakfast
 - Medical questionnaire (smoking, medication, common influenza, etc.)
- Analytical
 - From each participant all samples were assayed in 1 run
- Circadian variation
 - Samples were collected between 9 11 AM

Characteristics of the study population

Variable	Study population (n=40)	
Age (years)	41 ± 15	
Females	26 (65%)	
BMI (kg/m²)	22.6 ± 2.0	
Smokers	7 (18%)	
Oral contraceptives	9 (23%)	

Contribution of biological to total variation after N repeated measurements

Variable	1	3
Fibrinogen	44%	21%
In[CRP]	34%	15%
ETP	35%	15%
Prothrombin time	32%	13%
Antithrombin	18%	7%
Protein C clotting	23%	9%
Protein C chromogenic	13%	5%

Factors responsible for biological variation

- Age
- Gender
- Diet
- Smoking
- Drugs
- Time of blood sampling (diurnal, season)
- Particulate matter

Biological Variation

How to define the group in which to determine biological variation?

- Very defined
- Very broad
- Different definitions for different populations
- Different definitions for different diseases

Subgroup analyses and adjustments

- The results for the between- and within-subject variation only slightly changed when:
 - Outliers were not included
 - The analyses were performed for nonsmokers only
 - in men and women separately
 - after excluding periods of reported disease (common flu)
 - or for nonusers of contraceptives
- Adjustments for age and BMI did not affect significantly the withinsubject (biological) variation.

Seasonal variation

$$y = a + b*sin(2\pi(t-1)/365) + c*cos(2\pi(t-1)/365)$$

■ a: annual mean

■ b and c: components of seasonal variation

■ *t*: day of the year

Seasonal variation

Fibrinogen

Particulate matter

Particulate matter

Time lag before blood sampling (hr)

Time lag before blood sampling (hr)

Conclusions

- Within versus between-subject variation is different for different variables
- Analytical variation should be as low as possible
- For most hemostasis tests: analytical variation follows the desired level, for some even levels for optimum quality
- Biological variation is determined by many factors

Erasmus MC

ERASMUS MC

Dept. Hematology

- Goran Rudez
- Joyce Malfliet
- Simone Talens
- Femke van de Reijt
- Marianne van Schie
- Frank Leebeek
- Moniek de Maat

ECAT Foundation

- Piet Meijer
- Cornelis Kluft
- Moniek de Maat

MAASTRICHT UNIVERSITY

Lab. for Clinical Thrombosis and Haemostasis

- Evren Kilinc
- Henri MH Spronk
- Hugo ten Cate

