Reference Intervals: Practical Approaches

Gary L. Horowitz, MD

Director of Clinical Chemistry Beth Israel Deaconess Medical Center

Associate Professor of Pathology Harvard Medical School

9 November 2012 Leiden, The Netherlands 8th Annual ECAT Foundation Meeting

Disclosures

no financial disclosures

- relevant professional committee positions
 - Chair, CAP Chemistry Resource Committee
 - Past Chair, CLSI Working Group on Reference Intervals

use of conventional units

C28-A3 Vol. 28 No. 30 Replaces C28-A2 Vol. 20 No. 13

Defining, Establishing, and Verifying Reference Intervals in the Clinical Laboratory; Approved Guideline— Third Edition

This document contains guidelines for determining reference values and reference intervals for quantitative clinical laboratory tests.

A guideline for global application developed through the Clinical and Laboratory Standards Institute consensus process.

www.clsi.org Document C28-A3

Establishment of Reference Intervals

- <u>strong endorsement</u> of CLSI C28-A2 recommendation
- preferred method:
 - carefully collect samples from 120 reference individuals
 - use non-parametric method of analysis

Decision Limits

- To use national (or international) guidelines, one's method must give accurate results
- Tests where accuracy trumps peer group agreement
 - Cholesterol

- Glucose (Diabetes Diagnosis)
- Hemoglobin A1c
- Neonatal Bilirubin

- Urine Albumin ("Microalbuminuria")
- Creatinine (estimated GFR)
- How does one make this assessment?
- Proficiency Testing
 - traditionally, one is assessed against peer groups
 - this is because of "matrix effects" of survey material
 - if the material used is "real", then one can assess accuracy

Hemoglobin A1c Data (Based on CAP GH2-A 2006 Survey)

Method	No. Labs	Mean	S.D.	c.v.	Median	Low Value	High Value	
	24 23	8.27 8.03	0.43 0.46	5.3 5.8	8.3 8.0	7.4 7.1	8.9 9.3	
more than 50% of values less than 7.9	291	7.88	0.38	4.8	7.9	6.8	9.0	
	15 20 253 41 489	7.98 8.43 8.68 8.41 8.11	0.44 0.16 0.25 0.21 0.26	5.5 1.9 2.9 2.5 3.2	8.0 8.4 8.7 8.4 8.1	6.9 8.1 8.0 7.8 7.4	8.6 8.8 9.4 8.9 8.9	
	15 22	8.33 8.81	0.63 0.49	7.6 5.5	8.2 8.9	7.2 7.9	9.4 9.7	
more than 50% of values over 8.7 !	250	8.74	0.33	3.7	8.7	7.8	9.5	
	192 195 25	8.76 8.61 8.16	0.23 0.21 0.30	2.6 2.5 3.7	8.8 8.6 8.2	8.2 7.8 7.6	9.5 9.8 9.0	
REFERENCE METHOD *		8.40						

Virtually all values were graded "acceptable" (peer group grading) Do the labs know it's not acceptable?

Steps in the Traditional Method

- 1) Determine biological variables & analytical interferences
- 2) Determine selection/exclusion/partitioning criteria
- 3) Obtain written consent and completed questionnaire
- 4) Categorize reference individuals
- 5) Exclude individuals as determined a priori
- 6) Insure an adequate number of reference individuals
- 7) Prepare reference individuals for sample collection
- 8) Collect samples
- 9) Analyze samples
- 10) Inspect frequency distribution of data
- 11) Identify data errors and outliers
- 12) Determine reference intervals (and confidence limits)

Selection of Reference Individuals

- Exclusion/Partitioning
 - Informed Consent
 - Coding for Privacy

Alcohol Consumption	Illness, recent
Blood donor	Lactation
Blood pressure, abnormal	Obesity
Drug abuse	Occupation
Drugs, prescription	Oral contraceptives
Drugs, over the counter	Pregnancy
Environment	S gery, recent
Fasting or nonfasting	Tobacco use
Gen aic Factors	Fransfusion, recent
	Vitamin akueo
Hospitalization, current or recen	
Hospitalization, current or recen	
Age	Posture when sampled
Age Blood group	Posture when sampled Race
Age Blood group Circudian variation	Posture when sampled Race Sex
Age Blood group Circudian variation Diet	Posture when sampled Race Sex Storie of menstrual cycle
Age Blood group Circudian variation Diet EthnicBackground	Posture when sampled Race Sex Stripe of menstrual cycle Stage of pregnancy
Age Blood group Circudian variation Diet Ethnic Background Exercise	Posture when sampled Race Sex Stripe of menstrual cycle Stage of pregnancy Time of day when sampled
Age Blood group Circudian variation Diet Ethnic Background Exercise Fasting or nonfasting	Posture when sampled Race Sex Some of menstrual cycle Stage of pregnancy Time of day when sampled Tobacco use

Selection of Reference Individuals

- Exclusion/Partitioning
 - Informed Consent
 - Coding
- Questionnaire

	ALL INFORMATION IS STRICTLY CONFIDENTIAL AND IS FOR USE WHEN DIAGNOSING ILLNESS AMONG MEMBERS OF YOUR COMMUNITY.											
	SUBJECT ID #SAMPLE ID #											
	NAMEPHONE LAST FIRST MIDDLE											
	ADDRESS											
	AGE(YRS) SEX: (M) (F) RACE:											
	HEIGHTFTIN WEIGHT:LBS											
	PHYSICIAN NAME											
D	Do you consider yourself to be healthy?											
	DO YOU EXERCISE REBOLARY (Y7 (Y) (N) IF YES, HOW OFTEN? (HES PER WK) AND DEGREE OF ACTIVITY? (LIGHT)1 2 3 4 5 6 7 8 9 10 (VIGOROUS)											
	HAVE YOU BEEN SICK RECENTLY? (Y) (N) IF YES, WHEN?AND WHAT?											
	ARE YOU TAKING ANY PRESCRIBED MEDICATION? (Y) (N) IF YES, WHAT?											
	DO YOU HAVE HIGH BLOOD PRESSURE? (Y) 00											
D	o you take vitamin supplements?											
	ARE YOU EXPOSED TO ANY HAZARDOUS CHEMICALS IN YOUR JOB? (Y) (N) IF YES, WHAT?											
	DO YOUUSE TOBACCO? (Y) (N)											
	IF YES, WHAT FORM? HOW OFTEN?											
D	o you eat a special diet?											

Selection of Reference Individuals

- Exclusion/Partitioning
 - Informed Consent
 - Coding
- Questionnaire
- Sampling Methods:
 - Direct
 - A priori
 - A posteriori

Involves applying statistical methods to values in a laboratory database <u>without</u> selection of reference individuals

Working group strongly prefers direct over indirect sampling but recognizes potential utility of indirect sampling in some situations (e.g., pediatrics)

Hoffmann Technique (Beth Israel Deaconess Medical Center Data)

assumes Gaussian (normal) distribution of reference individual data!

Hoffman RG. Statistics in the practice of medicine. JAMA 1963; 185:864-873.

Subject Preparation and Other Pre-Analytical Considerations

Subject Preparation	Specimen Collection	Specimen Handling
Prior diet	 Environmental conditions 	 Transport
 Fasting vs. nonfasting 	during collection	 Clotting
 Abstinence from 	• Time	 Separation of
pharmacologic agents	 Body posture 	serum/plasma
 Drug regimen 	 Specimen type 	 Storage
• Sampling time in relation to	 Collection site 	 Preparation for analysis
biological rhythms	 Site preparation 	
 Physical activity 	 Blood flow 	
 Rest period before collection 	 Equipment 	
Stress	Technique	

Analysis of Data

• Determine number of subjects needed

- non-parametric: n=120 per (potential) partition

Check for outliers

- review frequency distribution visually!
- transform if needed, then Reed/Dixon or Tukey

Check for partitioning

- normal deviate test, z

Determine RI

- non-parametric method
- "robust" methods

Establish confidence limits on RI

Frequency Distributions

Rank Order Calcium Reference Values (for non-parametric analysis)

rank order	female n=120	male n=120		rank order	combined n=240
1	8.8	9.1		1	8.8
2	8.9	9.1		2	8.9
3	8.9	9.2		3	8.9
4	9.0	9.3		4	9.0
5	9.1	9.3		5	9.1
6	9.1	9.3		6	9.1
7	9.1	9.3	rank order	7	9.1
8	9.2	9.3	percentile	8	9.1
9	9.2	9.3	n=120 n=240	9	9.1
10	9.2	9.3	2 5th 3 6	10	9.2
			97.5th 118 235		V
111	10.0	10.2		231	10.3
112	10.0	10.3		232	10.3
113	10.0	10.3		233	10.3
114	10.1	10.3		234	10.3
115	10.1	10.3		235	10.3
116	10.2	10.3		236	10.3
117	10.2	10.3		237	10.3
118	10.2	10.3		238	10.3
119	10.3	10.4		239	10.4
120	10.3	10.6		240	10.6

Partitioning Calculation

- Use standard normal deviate test
 - for n>60, data need not be normally distributed
 - however, if highly skewed, transformation indicated
- Using calcium data,
 - men: x = 9.80, s₁ = 2.9
 - women: x = 9.57, s₂ = 3.1
- Suggests difference is statistically significant
- But is difference clinically significant?

$$z = 5.94$$

threshold₁₂₀ = 3

What If I Don't Have 120 Values?

- Transform data into a Gaussian distribution
 - not so easy to do
 - but, for completeness, here's what's involved
 - statistical tests to prove that transformed data is Gaussian
 - then central 95% is: $(\overline{x} 1.96*SD)$ to $(\overline{x} + 1.96*SD)$
 - 90% confidence limits (later): 2.81*SD / \sqrt{n}

Robust Techniques

What is Robust, Anyway?

- Think of median vs mean
 - one extreme value can change the mean
 - but it may have no effect on median!
- Similarly, robust techniques take a distribution
 - Make initial robust estimates of "location" and "spread"
 - Give more weight to values towards "center"
 - Calculate, iteratively, new values for "location" and "spread"

More Details on Robust Iterations

x _i		weight iteration 1	weight iteration 2	weight iteration 3	weight iteration 4	weight iteration 5	weight iteration 6
8.9		0.000	0.000	0.000	0.000	0.000	0.000
9.2		0.219	0.180	0.167	0.167	0.162	0.161
9.4		0.752	0.713	0.700	0.700	0.694	0.693
9.4		0.752	0.713	0.700	0.700	0.694	0.693
9.5		0.935	0.912	0.904	0.904	0.900	0.900
9.5		0.935	0.912	0.904	0.904	0.900	0.900
9.5		0.935	0.912	0.904	0.904	0.900	0.900
9.6		1.000	0.998	0.997	0.997	0.996	0.996
9.6		1.000	0.998	0.997	0.997	0.996	0.996
9.6		1.000	0.998	0.997	0.997	0.996	0.996
9.6		1.000	0.998	0.997	0.997	0.996	0.996
9.7		0.935	0.954	0.960	0.960	0.962	0.962
9.7		0.935	0.954	0.960	0.960	0.962	0.962
9.7		0.935	0.954	0.960	0.960	0.962	0.962
9.7		0.935	0.954	0.960	0.960	0.962	0.962
9.7		0.935	0.954	0.960	0.960	0.962	0.962
9.8		0.752	0.788	0.800	0.800	0.805	0.806
9.9		0.491	0.537	0.552	0.552	0.558	0.559
9.9		0.491	0.537	0.552	0.552	0.558	0.559
10.2		0.000	0.000	0.000	0.000	0.000	0.000
T _{bi} =	9.6	9.616	9.622	9.624	9.624	9.624	9.624

Reference Interval Robust Technique Calcium, Women, n=20

Randomly Selected Data Sets of n=20 From Original Date Set of 120 Females

	Sample 1	Sample 2	Sample 3
1	9.5	9.9	9.7
2	9.9	9.5	9.8
3	9.5	10.1	9.5
4	9.7	9.6	9.7
5	9.6	9.9	9.7
6	9.9	10.2	9.8
7	9.7	9.2	9.4
8	10.2	9.7	9.3
9	9.2	9.5	9.6
10	9.4	9.7	9.7
11	9.7	9.3	9.7
12	9.7	9.5	9.7
13	8.9	9.5	9.7
14	9.8	10.0	9.3
15	9.5	9.2	9.6
16	9.6	9.4	10.3
17	9.6	9.6	9.1
18	9.7	10.0	9.7
19	9.4	10.2	9.5
20	9.6	9.7	9.2
Reference Interval	9.0 - 10.2	9.1 - 10.4	9.1 - 10.1

Reference Intervals:

Non-Parametric (n=120) vs Robust (n=20)

	Calcium	Calcium	ALT	ALT
	non-parametric	robust	non-parametric	robust
women	8.9-10.2	9.0-10.2	6-46	7-39
men	9.2-10.3	9.0-10.5	10-55	9-57

Recent Application of Robust Technique

- BIDMC implementing new system for coagulation factor assays
 - more than 2 in 20 outside proposed limits
 - succeeded in recruiting ~40 reference individuals
 - robust technique to the rescue!
- one of my colleagues had heard this talk and asked me to help with analysis
 - Excel vs StatisPro

Calculations in Excel

	a alu c	MAD												361(209		24 E 455								
50q+	value	MAD 27.4			40.70	0 4 6 5 4	404 74				u	u"Z 1	(1-unz)n4	Jum	1-u^2	(1-54"2)	produ	ct						
1	146.4	21.4	_	0.	4078	0.6951	101.70	58			0.00734	5.38452E-05	0.99978	5.38336E	-05 0.99995	5 0.99973	0.999	168						
2	148.2	29.2	_	0.	4345	0.6580	97.5	169			0.00782	6.11521E-05	0.99976	6.11371E	-05 0.99994	1 0.99969	0.999	63						
3	85.0	34.0	_	-0.	5060	0.5535	47.0	501			0.00911	8.29093E-05	0.99967	8.28818E	-05 0.99992	0.99959	0.99	95						
4	119.0	0.0	_	0.	.0000	1.0000	119.00	000			0	0	1		0 1	1 1		1						
5	121.9			MAD	A433		101 1				0.00078	6.03172E-07	1	6.03171E	-071 1	1 1	56	11205.61						
6	85.0	4	146.4	27.4	_	0.40	70 0	16951	101 7659		0.00911	8.29093E-05	0.9996	u	u^2	(1-u12)14		um	1-u^2 (1-5u^	2) produc	*			
7	113.3	2	440.0	20.2	_	0.42	45 0	4500	07.5460		0.00153	2.33021E-06	0.9999	0.00734	5.38452E-05	6 0.99978	5.38	336E-05	0.99995 0.999	73 0.9996				
8	119.0	-	05.0	24.6		-0.50	49 0	.0300	47.0504		0	0		0.00782	6.11521E-05	0.99976	6.1	1371E-05	0.99994 0.999	69 0.9996	3			
9	119.0	3	09.0	34.0	_	-0.90	60 0 60 4		47.0901		0	0		0.00911	\$ 29093E-05	0.99967	\$ 25	212F-05	0.99992 0.999	59 0.999	15			
10	109.3	4	119.0	0.0	_	0.00	00 1		119.0000		0.0026	6.74822E-06	0.9999	0.00771	0.270752.05	4	V.64	0	4	4	1			
11	93.5	5	121.5	•a \$ •	value	MAD		u			0.00683	4.66365E-05	0.9998	0.00070	6 024725-07		6.1				* Jbi(205.6)			
12	182.5	6	85.0	1 1	146.4	27.4		0.4078	0.6951	101.7658	0.01701	0.000289196	0.9988	0.00018	0.031122-01	0 0004 7	0.1	u	u^2	(1-u^2)^4	zum	1-u^2	(1-5u^2)	product
13	164.0	7	113.3	2	148.2	29.2		0.4345	0.6580	97.5169	0.01205	0.000145235	0.9994	0.00911	0.29093E-09	0.99961	0.4	0.00734	5.38452E-05	0.99978	5.38336E-05	0.99995	0.99973	839996.0
14	131.2	*	119.0	3	25.0	34.0		-0.5060	0.5535	47.0501	0.00327	1.06749E-05	0.9999	0.00193	2.33021E-06	0.999999	2.3	0.00782	6.11521E-05	0.99976	6.11371E-05	0.99994	0.99969	0.99963
15	176.1	9	119.0	a l	110 500 \$	value	MAD	0.5000	u	ц.	0.00521	0.000222020	0.0000	0	0	1		0.00911	8.29093E-05	0.99967	8.28818E-05	0.99992	0.99959	0.9995
16	119.0	10	109.	-	04 1	146.4	27.4		0.4078	0.6951	0.01525	0.000233039	0.7770	0	0) 1		0	0	1	0	1	1	1
17	12.4.4	11	93.5	,	AF 2	148.2	29.2		0 4345	0.6580	0.00450	2 40//5 0/		0.0026	6.74822E-06	0.99997	6.7	0.00078	6.03172E-07	1	6.03171E-07	1	1	1
40	454.0	12	182.	•	2 2	25.0	24.0		-0 506.0	0.5575	0.00158	2.49662-06	0.9999	0.00683	4.66365E-05	5 0.99981	4.6	0.00911	8.29093E-05	0.99967	8.28818E-05	0.99992	0.99959	0.9995
40	00.4	13	164.	<u>(</u>		440.0	0.0	_	0.0000	1 0000	0.00857	7.34422E-05	0.9997	0.01701	0.000289196	0.99884	0.0	0.00153	2.33021E-06	0.99999	2.33019E-06	1	0.99999	0.99999
17	442.2	14	131.2	*	119 9	424.0	2.0	_	0.0000	0.0000	0.00828	6.84798E-05	0.9997	0.01205	0.000145235	0.99942	0	0	0	4	0		1	1
20	113.3	15	176.	9	119 2	121.7	2.7	_	0.0432	0.9963	0.00153	2.33021E-06	0.9999	0.00327	1.06749E-05	6 0.99996	1.0	0	, v		ů.			
21	120.4	16	119.0	10	10 <u>5 b</u>	85.0	34.0	_	-0.5060	0.5535	0.00037	1.40573E-07		0.01529	0.000233839	0.99906	0.0	0.0026	6 740225-06	0.00007	6 740025-06	0 00000	0 00007	0 00000
22	110.6	17	124.	11	93 (113.3	5.1	_	-0.0848	0.9857	0.00225	5.06062E-06	0.9999	0	0) 1		0.00602	4663665-06	0.00004	4662705-05	0.00005	0.00077	0.00072
23	114.7	18	151	12	182 8	119.0	0.0		0.0000	1.0000	0.00115	1.32612E-06	0.9999	0.00158	2.4966E-06	0.99999	2.4	0.00683	4.663692-09	0.99901	4.662162-05	0.77775	0.99911	0.99972
24	108.0	10	00.4	13 13	164 9 -	119.0	0.0		0.0000	1.0000	0.00295	8.67822E-06	0.9999	0.00857	7.34422E-05	0.99971	7.3	0.01/01	0.000289196	0.99884	0.000288862	0.99971	0.99855	0.99827
25	117.5	20	442.5	14 1	131 10	109.3	9.7		-0.1443	0.9588	0.0004	1.61372E-07		0.00828	6.84798E-05	6 0.99973	6	0.01205	0.000145235	0.99942	0.00014515	0.99985	0.99927	0.99913
26	139.4	20	42.0	15 1	176 11	93.5	25.5		-0.3795	0.7327	0.00546	2.98474E-05	0.9998	0.00153	2.33021E-06	0.99999	2.7	0.00327	1.06749E-05	0.99996	1.06745E-05	0.999999	0.99995	0.99994
27	105.4	21	120.	16 1	119 12	182.5	63.5		0.9450	0.0115	0.00364	1.32655E-05	0.9999	0.00037	1 40573E-07	1	1.4	0.01529	0.000233839	0.99906	0.000233621	0.99977	0.99883	0.9986
28	134.4	~~	110.0	17	124 13	164.0	45.0		0.6697	0.3042	0.00412	1.70093E-05	0.9999	0.00225	5 06 06 25-06	0 00000	5.0	0	0	1	0	1	1	1
29	136.0	23	114.	18 1	151 14	131.2	12.2		0.1816	0.9352	0.00455	2.07273E-05	0.9999	0.00225	4 226425-06	0.00000	4.0	0.00158	2.4966E-06	0.99999	2.49658E-06	1	0.999999	0.99999
30	99.3	24	108.	19	88 15	176.1	57.1		0.8497	0.0773	0.00528	2.78341E-05	0.9998	0.00115	0.630325-06	0.77777	0.6	0.00857	7.34422E-05	0.99971	7.34206E-05	0.99993	0.99963	0.99956
31	110.6	25	117.5	20	113 16	119.0	0.0		0.0000	1.0000	0.00225	5.06062E-06	0.9999	0.00299	0.610222-06	0.99997	0.0	0.00828	6.84798E-05	0.99973	6.8461E-05	0.99993	0.99966	0.99959
32	100.5	26	139.	21	121 17	124.9	5.9		0.0878	0.9846	0.00495	2 454655-05	0.999	0.0004	1.613722-07	1	1.4	0.00153	2.33021E-06	0.99999	2.33019E-06	1	0.999999	0.999999
33	106.7	27	105.		110 18	151.0	32.0		0.4762	0.5979	0.00329	1.025065-05	0 9999	0.00546	2.98474E-05	0.99988	2.9	0.00037	1.40573E-07	1	1.40573E-07	1	1	1
34	139.4	28	134.	22	19	88.1	30.9		-0.4598	0.6218	0.00520	2 004745-05	0.0000	0.00364	1.32655E-05	0.99995	1.3	0.00225	5.06062E-06	0.99998	5.06052E-06	0.99999	0.99997	0.99997
35	114 7	29	136.	24	20	113.3	5.7		-0.0848	0.9857	0.00346	4.336435-06	0.7770	0.00412	1.70093E-05	5 0.99993	1.7	0.00115	1.32612E-06	0.99999	1.32611E-06	1	0.99999	0.999999
26	124.6	30	99.3	24	21	120.4	1.4		0.0208	0.9991	0.00119	1.326122-06	0.9999	0.00455	2.07273E-05	5 0.99992	2.0	0.00295	8.67822E-06	0.99997	8.67792E-06	0.99999	0.99996	0.99995
27	429.0	31	110.4		22	110.6	0.4	_	-0.1250	0.96.90	0.00284	0.09096E-06	0.7777	0.00528	2.78341E-05	6 0.99989	2.1	0.0004	1.61372E-07	1	1.61372E-07	1	1	1
20	04.0	32	100.	26	39 66	44.4.7	4.2	_	-0.06.40	0.0070	0.00241	5.80434E-06	0.9999	0.00225	5.06062E-06	6 0.99998	5.0	0.00546	2.98474E-05	0.99988	2.98438E-05	0.99997	0.99985	0.99982
30	20.2	33	106.	21	105 2.3	40.0	44.5		-0.0640	0.7716	0.00592	3.50292E-05	0.9998	0.00495	2.45465E-05	0.9999	2.4	0.00364	1.32655E-05	0.99995	1.32648E-05	0.99999	0.99993	0.99992
39	98.1	34	139.	28	134 24	447.5	1.0	_	-0.1637	0.9411	0.0056	3.13284E-05	0.9998	0.00329	1.08506E-05	6 0.99996	1.0	0.00/42	1 700935-05	0.99992	1 700828-05	0.99999	0.99994	0.9999
40	131.2	35	114.1	29	136 2.9	420.4	1.9		-0.0223	0.9990	0.00327	1.06749E-05	0.9999	0.00546	2.98474E-05	6 0.99988	2.9	0 00455	2 072735-05	0.99992	2 072565-05	0.999999	0.9999	0.99932
	_	36	12.9	30	99 25	139.4	20.4	_	0.3036	0.8242				0.00115	1.32612E-06	0.99999	1.3	0.00400	2.012102-00	0.00000	3 303445-05	0.00007	0.7777	0.77700
		37	128	31	110 27	105.4	13.6		-0.2024	0.9198	96.9423	-		0.00284	8.05856E-06	0.99997	8.	0.00928	2.103412-05	0.99969	2.10311E-05	0.99997	0.99966	0.99903
		20	96.9	32 1	10(28	134.4	15.4		0.2292	0.8977	120.6532	-		0.00241	5.80939E-06	0.99998	5.8	0.00225	5.06062E-06	0.99998	5.06052E-06	0.999999	0.99991	0.99997
	-	20	00.0	33 .	106 29	136.0	17.0		0.2530	0.8761	119.1488	_		0.00592	3.50292E-05	6 0.99986	3.5	0.00495	2.45465E-05	0.9999	2.45441E-05	0.99998	0.99988	0.99985
	-	37	40.4	34 1	136 30	99.3	19.7		-0.2932	0.8355	82.9648	_	-	0.0056	3.13284E-05	0.99987	3.1	0.00329	1.08506E-05	0.99996	1.08502E-05	0.999999	0.99995	0.99993
		40	191.4	35	114 31	110.6	8.4		-0.1250	0.9690	107.1705			0.00327	1.06749E-05	0.99996	1.0	0.00546	2.98474E-05	0.99988	2.98438E-05	0.99997	0.99985	0.99982
				36 .	124 32	100.5	18.5		-0.2753	0.8542	85.8429					******	1.7	0.00115	1.32612E-06	0.99999	1.32611E-06	1	0.99999	0.99999
				37 .	128 33	106.7	12.3		-0.1830	0.9341	99.6700					· · · · ·		0.00284	8.05856E-06	0.99997	8.0583E-06	0.99999	0.99996	0.99995
				38	96 34	139.4	20.4		0.3036	0.8242	114.8895							0.00241	5.80939E-06	0.99998	5.80925E-06	0.999999	0.99997	0.99997
				39	98 35	114.7	4.3		-0.0640	0.9918	113.7626							0.00592	3.50292E-05	0.99986	3.50243E-05	0.99996	0.99982	0.99979
				40	121 36	129.6	10.6		0.1577	0.9509	123.2306							0.0056	3.13284E-05	0.99987	3.13245E-05	0.99997	0.99984	0.99981
					37	128.0	9.0		0.1339	0.9644	123,4491							0.00327	1.06749E-05	0.99996	1.06745E-05	0.999999	0.99995	0.99994
					38	96.9	22.1		-0,3289	0,7954	77,0719													
					39	98.1	20.9		-0.3110	0.8159	\$0.0387													
					40	131.2	12.2		0 1216	0.9352	122 6934													
					40	191.6	16.6		0.1010	4.7276	166.0724													

StatisPro v2.0 (from CLSI)

Importance of Confidence Limits

- Provide a <u>quantitative measure</u> of the <u>variability</u> of the <u>estimate of RI</u>
- This variability narrows

as the sample size increases

 To get improved precision of the RI, one may choose to obtain larger n

Confidence Limits Non-Parametric Technique

Confidence Limits: Robust Techniques

- no formula
- rather, use "bootstrapping"
 - sample, with replacement, many times
 - each time, calculate lower reference interval
 - •take upper & lower 5% of these determinations
 - as 90% confidence intervals
 - repeat for upper reference limit

n	Lower Reference Limit (Calcium, Women)	Upper Reference Limit (Calcium, Women)
20	8.4 - 10.2	9.9 - 10.4
40	8.7 - 10.0	10.0 - 10.4
80	8.9 - 9.1	10.0 - 10.2

vs. non-parametric, n = 120 8.8 - 9.1 10.1 - 10.3

Transference

- If a laboratory has a current, well-established RI,
 - it may not need to establish a new RI

(which requires new samples from reference individuals)

• Rather,

it <u>may be able to transfer</u> the current RI (using samples already in lab from typical patients)

Transference Examples (adapted from CLSI EP9-A2)

Current Method

Validation

- **Every laboratory** is capable of validation
- Working Group strongly endorses C28-A2 method:
 - pay strict attention to pre-analytic and analytic variables.
 - collect samples from 20 reference individuals
 - if no more than 2 (of 20) is outside proposed RI, the proposed RI can be used
- probability of false rejection is 5-7% i.e., rejecting proposed RI when, in fact, it is valid based on binomial distribution
- C28-A3 adds information on other, sophisticated tests

• protocol:

- find several labs using same methods
- each collects a relatively small number of "normals" (n~20)
- pool data to get number needed (>120) to establish reference interval

• BIDMC data set:

- screened, healthy volunteers
- age: range 27-63, mean 41
- predominantly white, ~2/3 female

	Cholesterol <200	
n	20	
mean	190.65	
"()"	2 / /0	
<u> </u>	115	
"mean-2SD"	(min=138)	
	266	
"mean+2SD"	(max=253)	
below/above Roche RR	0 8	

			.
	Cholesterol	Calcium	
	<200	8.4-10.2	
n	20	20	
mean	190.65	9.535	
	07.70	0.074	
30	57.77	0.274	
	115	8.99	
	(11111-130)	(1111-7.0)	
	266	10.08	
"mean+25D"	(max-253)	(max - 10.1)	
below/above	0	0	
Roche RR	8	0	

Cholesterol Calcium TSH 200 8.4-10.2 0.3-4.2 n 20 20 mean 190.65 9.535 2.51 mean 190.65 9.535 2.51 "SD" 37.79 0.274 1.481 115 8.99 -0.4 1.481 "mean-2SD" (min=138) (min=9.0) (min=0.55) "mean+2SD" 10.08 5.1 1 below/above 0 0 0 2 below/above 8 0 2 2					4
Image: space spac		Cholesterol	Calcium	TSH	
n 20 20 mean 190.65 9.535 2.51 "SD" 37.79 0.274 1.401 "SD" 37.79 0.274 1.401 "mean-2SD" 115 8.99 -0.4 "mean-2SD" (min=138) (min=9.0) (min=0.55) "mean+2SD" 266 10.08 5.1 below/above 0 0 0 Below/above 8 0 2		<200	8.4-10.2	0.3-4.2	
n 20 20 20 mean 190.65 9.535 2.51 "SD" 37.77 0.274 1.481 "SD" 37.77 0.274 1.481 "mean-2SD" (min=138) (min=9.0) (min=0.55) "mean+2SD" (max=253) (max=10.1) (max=5.9) below/above 0 0 0 Roche RR 8 0 2					
mean 190.65 9.535 2.51 "SD" 37.77 0.274 1.401 115 8.99 -0.4 "mean-2SD" (min=138) (min=9.0) (min=0.55) "mean+2SD" 266 10.08 5.1 below/above 0 0 0 Below/above 8 0 2	n	20	20	20	
''SD'' 37.79 0.274 1.401 115 8.99 -0.4 ''mean-2SD'' (min=138) (min=9.0) (min=0.55) ''mean+2SD'' 266 10.08 5.1 ''mean+2SD'' (max=253) (max=10.1) (max=5.9) below/above Roche RR 0 0 0	mean	190.65	9.535	2.51	
3D 37.77 0.274 1.401 115 8.99 -0.4 "mean-2SD" (min=138) (min=9.0) (min=0.55) 266 10.08 5.1 "mean+2SD" (max=253) (max=10.1) (max=5.9) below/above Roche RR 0 0 0 8 0 2 2		07.70	0.074	1 401	
115 8.99 -0.4 "mean-2SD" (min=138) (min=9.0) (min=0.55) 266 10.08 5.1 "mean+2SD" (max=253) (max=10.1) (max=5.9) below/above Roche RR 0 0 0 8 0 2 2	30	57.77	0.274	1.401	
"mean-2SD" (min=138) (min=9.0) (min=0.55) 266 10.08 5.1 "mean+2SD" (max=253) (max=10.1) (max=5.9) below/above Roche RR 0 0 0 8 0 2 2		115	8.99	-0.4	
- 266 10.08 5.1 - - - (max=253) (max=10.1) (max=5.9) below/above 0 0 0 0 Roche RR 8 0 2 -	"mean-2SD"	(min=138)	(min=9.0)	(min=0.55)	
"mean+2SD" (max=253) (max=10.1) (max=5.9) below/above 0 0 0 Roche RR 8 0 2		266	10.08	5.1	
below/above000Roche RR802	"mean+2SD"	(max=253)	(max=10.1)	(max=5.9)	
Roche RR 8 0 2	below/above	0	0	0	
	Roche RR	8	0	2	

Multicenter Trials

• Why should each laboratory establish its own RI?

- differences in methods
 - given traceability, this may no longer be necessary
- differences in populations
 - alleged, but not frequently documented

• Requirements to insure success of multicenter trials:

- a priori selection, insuring adequate numbers of subjects
- pre-analytic phase requirements
- traceability, inclusion of commutable reference materials
- QC program

CAP Reference Range Service (based on CAP RRS-B 2006 Survey)

Note that 2 values from BIDMC became outliers in overall analysis (6.62, 617)

A Superbly Done Reference Interval Study (with very practical implications)

Prevention and Rehabilitation

Distribution of creatine kinase in the general population: Implications for statin therapy

Lizzy M. Brewster, MD,^a Gideon Mairuhu, MD,^c August Sturk, PhD,^b and Gert A. van Montfrans, MD, PhD^a Amsterdam and Nieuwegein, <u>The Netherlands</u>

Background Eligible subjects with mildly elevated serum creatine kinase (CK) activity are often excluded before randomization in statin trials, but patients may potentially be misclassified as having hyperCKemia when inappropriate reference limits are used. Little information is usually given regarding how reference limit data were established, although evidence suggests that the variation of CK activity in the general population is wider than reflected in reference intervals in current use.

Methods We determined reference intervals for according to NCCLS guidelines

1444 individuals, after 3 days of rest

of white European (n = 503), South Asian

Results The calculated upper reference limits (97.5th percentile) for nonblack and black women and men were 2 to 5 times higher than recommended by the assay manufacturer. Respectively 13% of the white Europeans, 23% of South Asians, and 49% of the black people had serum CK activities above the manufacturer-provided limits.

Conclusion The variation in CK activity within the population is wider than previously suggested in smaller, nonrandom samples, and relatively high values occur frequently in all subgroups studied after rest. Therefore, we infer that upward adjustment of the upper reference limit is necessary for all population subgroups studied. The use of appropriately

established reference intervals may improve the use of statins and particularly benefit the control of dyslipidemia in those

with relatively high baseline CK activity.

Am Heart J. 2007;154:655-61

Distribution of the data

We visually inspected the distribution of the data and the values in the tails of the distribution to identify data errors

and outliers. In addition, the Dixon range statistic was used. When this method is applied to the upper end of the distribution, the largest value may be an outlier if the difference between the 2 largest values is greater than one third of the difference between the maximum and minimum values of the distribution.

If several probable outliers are present, the one-third rule is applied to the least extreme outlier as if it were the only outlier.¹⁴

Calculated reference limits

After deletion of errors and outliers, we nonparametrically assessed the 2.5th and 97.5th percentiles as the reference limits for CK⁺⁺ and compared these with the reference interval recommended by the manufacturer.

Partition

We decided that partition into subclasses of sex and selfdefined ancestry would be clinically relevant, and assessed whether partition would reduce the variation in the data by inspecting the data and by statistical partitioning testing, assessing at least 120 subjects in each subgroup.14 Several statistical criteria have been proposed to establish separate reference intervals for different population groups.14,16,17 We followed the guidelines of the CLSI and applied the standard normal deviate test to the original data when we assessed 2 subclasses. In this test, z statistics are calculated for 2 groups of at least 120 people and compared with the critical value: $z^* = 3(n_1 + n_2/240)^{1/2}$.¹⁴ Separate reference intervals for each subclass are appropriate when the calculated z value exceeds z^* , or if the larger SD exceeds 1.5 SD₁.¹⁴ For the assessment of sex-ancestry groups involving more than 2 subclasses, analysis of variance with a Tukey posttest was performed on the data after a logarithmic transformation to base 10. Any significant outcome in the Tukey posttest was retested with the more stringent z* criterion as described above.

"visually inspected the data"

"Dixon range statistic was used"

"non-parametrically assessed the 2.5th and 97.5th percentiles"

"decided to partition into subclasses"

"assessing at least 120 subjects in each subgroup"

Brewster LM et al. Am Heart J. 2007;154:655-61.

Non-Parametric Reference Intervals

should be ~2.5%

Gender	Ethnicity	n	2.5 th %ile	97.5 th %ile	% m	> ULN fro anufactur	m er
Women	White	252	29	201		8%	
Women	SouthAsian	147	37	313		16%	
Women	Black	387	48	414		42 %	
Men	White	251	47	322		17%	
Men	SouthAsian	123	47	641		32%	
Men	Black	183	71	801		62 %	

Brewster LM et al. Am Heart J. 2007;154:655-61.

Upshot of This Data

- hyperCKemia overdiagnosed
- statins may be discontinued based on incorrect reference intervals
- labs who did not verify their reference intervals share responsibility for this problem (and that includes most of us)

Summary

Decision Limits vs Reference Intervals (RI)

• Reference Individuals:

- selection/partitioning/preparation

Data Analysis

examine distribution/eliminate outliers

– to establish RI

- n=120, non-parametric preferred
- <120: transform to Gaussian or use robust method</p>
- to verify RI established elsewhere
 - n=20, valid if no more than 2 outside proposed RI

Thank you for your attention!

Questions and/or Comments?

Course Objectives

Upon completion of this session, participants will be able to.....

- perform reference interval validation studies with as few as 20 samples
- identify 5 commonly performed tests where conventional reference intervals are not relevant
- list 3 resources that can be used to help with reference interval determinations in their own laboratories

Answers:

- one can verify a reference interval with 20 reference individuals (no more than 2 outside proposed interval)
- accuracy required: Hemoglobin A1c Neonatal Bilirubin Cholesterol Glucose Creatinine
- reference interval resources: CAP Accuracy-Based Surveys CLSI C28-A3 CAP Reference Range Service

Hemoglobin A1c Data (Based on CAP GH2-A 2006 Survey)

Reference Value	Within 7% of Reference Value	Range of Peer Group Pass Rates		Overall Pass Rate
5.3	4.9 - 5.7	44.8	97.2	86.7
8.4	7.8 - 9.0	42.3	- 100	85.6
10.7	9.9 - 11.5	53.1	98.1	84.7

BIDMC Outpatient CK Data

caveats on BIDMC data:

- all outpatients (not reference individuals)
- race not known (predominantly white)

		Paper	BIDMC
women	%>140	37%	26%
	median	95	93
men	%>1 74	35%	30%
	median	143	130

Statins and Muscle Disease ACC/AHA/NHLBI Clinical Advisory

- "Routine monitoring of CK is of little value in the absence of clinical signs or symptoms."
- "Therefore, all persons beginning to receive statins should be instructed to report muscle discomfort or weakness or brown urine immediately, which should then prompt a CK measurement."
- If a patient has signs or symptoms,
 - Check TSH as well as CK
 - If CK > 10 X ULN \rightarrow stop statin therapy immediately
 - If CK < 10 X ULN \rightarrow maintain statin therapy & monitor weekly