Inhibitor testing: Positive or negative? True or false?

> Emmanuel J Favaloro* ICPMR, Westmead Hospital, NSW 2145 Australia

Email: emmanuel.favaloro@swahs.health.nsw.gov.au

*With a lot of help from: Geoff Kershaw, Fiona Kwok, Roslyn Bonar

ECAT meeting, November 2008, Leiden, The Netherlands

Talk outline:

> Overview of factor inhibitors
 Significance & methodologies

> Quality control issues

 External QC, assay & result variability, true and false positives and negatives

Types of factor inhibitors:

Congenital/hereditary haemophilia

- Develop in response to factor replacement therapy
- Allo-antibodies (infused factor seen as a foreign protein)
- Usually develop in Haemophilia A (incidence ~15-30%)
- Serious complication/can compromise therapy
- High responders, low responders
- Risks/causes of inhibitor development not fully understood
 - severe > mild/mod
 - large deletions > inversions > nonsense > missense
 - family history, exposure days, mode of administration
 - MHC phenotype, ability to recognise FVIII as foreign and develop an immune response

Types of factor inhibitors:

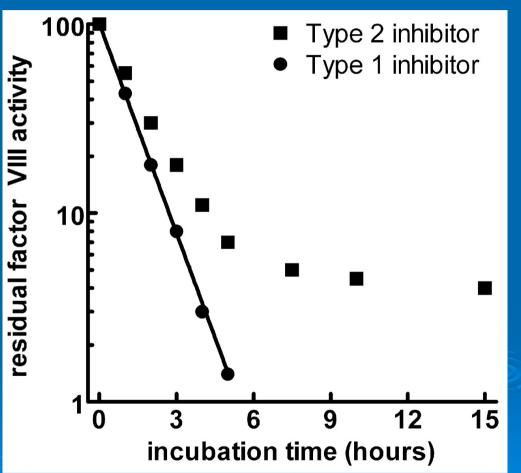
- > Acquired haemophilia
 - Autoantibodies; develop in individuals without a history of bleeding
 - Usually develop against factor VIII, but can also develop against other factors (eg FV)
 - Rare disease, 1-2 individuals/million persons/year
 - Associated with autoimmune and lymphoproliferative diseases, drug reactions, pregnancy/delivery.
 - In ~50% cases, no obvious underlying disease
 - Most patients are >60yrs of age
 - Patients often present with severe life-threatening bleeds: muscle, epistaxis, haematuria, GIT, intracerebral.
 - Otherwise chance finding (eg prolonged APTT, mixing studies)

Types of factor inhibitors:

> Acquired haemophilia

- 10-20% mortality rate
- Spontaneous remission 5-30% (esp. pregnancy related)
- Complex (type 2) non-linear reaction kinetics
- Titre can increase with dilution of patient plasma.
- Hence, Bethesda assay may underestimate potency
- No correlation between titre/FVIII/bleeding

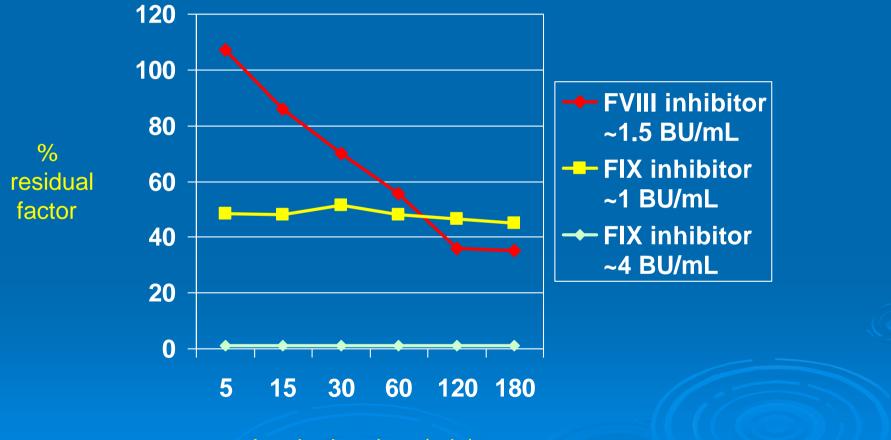
FVIII inhibitor strength


> ≤ 5 Bethesda units = 'WEAK' (low responders)
 > 5 Bethesda units = 'STRONG' (high responders)

Inhibitor strength can influence the approach to therapy

Kinetics of type 1 and type 2 inhibitors against factor VIII.

• Type 1 inhibitors develop in patients with congenital haemophilia A and are generally alloantibodies that show complete neutralization of FVIII activity.


 Acquired inhibitors to FVIII show type 2 kinetics, with a rapid neutralization phase, followed by an equilibrium in which residual FVIII activity can be detected *in vitro*

Ma AD, et al. Hematology ASH 2006;432-437

Fast-acting vs slow-acting inhibitors

1:1 mixes of test plasma : pooled normal incubated at 37°C

Incubation time (min)

Screening tests1.PT2.APTT3.Fibrinogen4.Thrombin Time5.FBC/platelets film6.MIX test with prolonged incubation7.Factor assays

Inhibitor Titre (Bethesda) assays

Effect of FVIII inhibitors on APTT mixing tests

Factor inhibitor Assays

- Bethesda assays are the most widely used for quantitation
- Original assay according to Kasper et al, 1975
 defined 1 BU as inhibitor strength that reduced FVIII:C in a plasma pool by 50%
- Nijmegen modification (Verbruggen et al, 1995) *introduced to improve specificity, especially at lower end of activity range*
 - additional refinements (Verbruggen et al, 2001, 2002)

Original vs Nijmegen modified Bethesda Assays

1. Normal plasma pool (NPP)

Original assay: - <u>unbuffered</u>

Nijmegen: - <u>buffered</u> to pH 7.4 with 0.1M imidazole / HCl

2. Control mixture Original assay:

- NPP plus equal volume of <u>imidazole buffer</u> of pH 7.4.

Nijmegen:

- NPP plus equal volume of <u>FVIII-deficient</u> plasma

Bethesda assays – composition of patient dilutions

	Diluent	Pooled normal
Original assay	Imidazole buffer	Unbuffered
Nijmegen assay	FVIII-deficient plasma	Buffered to pH 7.4

Bethesda assays – composition 'control' mixture

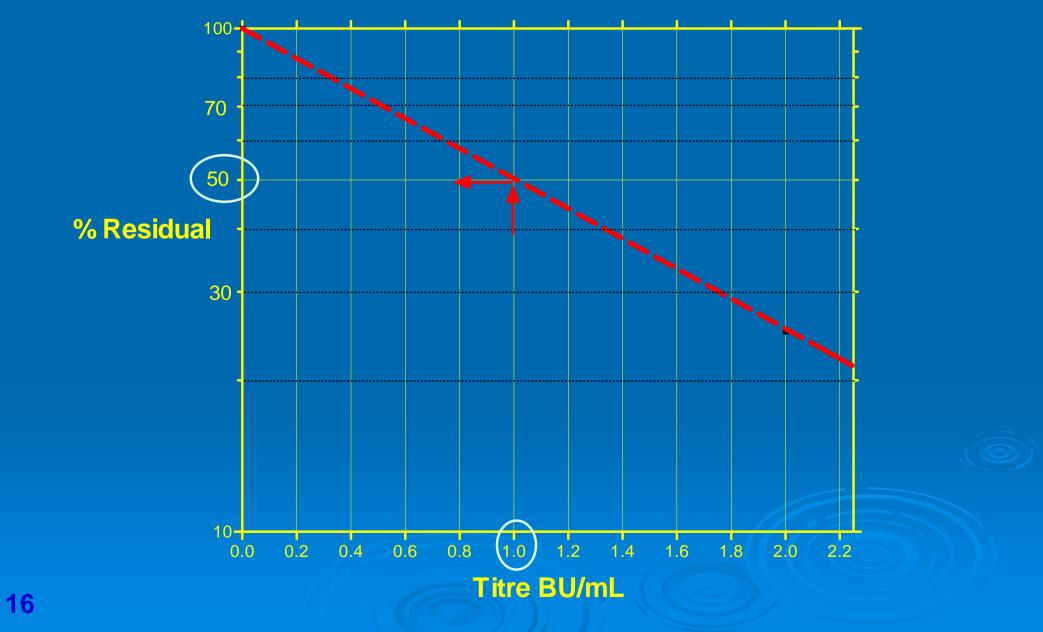
Original Bethesda assay

1 volume unbuffered pooled normal

1 volume imidazole buffer pH 7.4

Nijmegen assay

1 volume buffered pooled normal pH 7.4


1 volume FVIII deficient plasma (or 4% albumin)

NB: The control <u>mixture</u> has <u>about</u> 50% FVIII:C at the start of the incubation

FVIII inhibitor method:

- 1. Test plasma (option: heat inactivated 30 min at 56°C, hard spun. Removes endogenous Fibrinogen and FVIII:C)
- 2. NPP (Neijmen: Buffer to pH 7.4 with Imidazole + HCI)
- 'Control' plasma (NPP + Imidazole (Bethesda) or + FVIII-def. Plasma (Neijmen) using 1:1 mix)
- 4. Make serial dilutions of test plasma from neat to 1/X (Bethesda using Imidazole; Neijmen using FVIII-def. Plasma)
- 5. Mix equal volumes of test plasma dilutions with (Neijmen: buffered) NPP
- Incubate all samples at 37 degrees for 2 hours, then measure residual FVIII in the mixture (compared to 'control' plasma representing 100% residual FVIII).
- 7. The amount of FVIII remaining from the NPP in test samples after 2 hours incubation is inversely proportional to the inhibitor titre.

FVIII Inhibitor Titre

Comparative inhibitor detection: original vs Neijmen modified Bethesda assay

	n	original	modified
Severe H-A, no Hx inhibitor	10	0.5-0.9	0.0
Mild H-A, no Hx inhibitor	22	0.5-0.9	0.0
H-A with inhib. under treatment	6	0.5-1.9	0.6-1.7
H-A with strong inhibitor	7	13-315	10-320

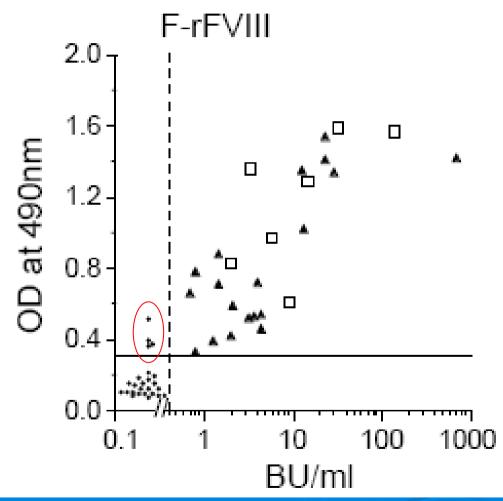
Verbruggen et al. Thromb Haemost 1995; 73:247-51

Bethesda assays vs ELISA

Bethesda assays detect antibodies that inhibit FVIII function

ELISAs (immunoassays) may detect both inhibitory and non-inhibitory antibodies.

Examples:


A. 8 of 21 (38%) –ve by Bethesda were +ve by ELISA (BJH 1996; 93:688-93)
B. 4 of 26 (15%) -ve by Bethesda were +ve by ELISA (JTH 2003 1:2548-53)
?false positives by ELISA or true negatives by Bethesda

Bethesda assays vs ELISA

Dazzi et al; BJH 1996; 93:688-93: 8 of 21 (38%) –ve by Bethesda were +ve by ELISA

 Most considered 'specific' using pre-incubation with rFVIII to abrogate ELISA binding (ie lower or normal OD obtained using test serum post rFVIII pre-dilution).

Correlation between ELISA and Bethesda assays for inhibitor detection

Ling et al, JTH (2003) 1:2548-53

- □ Acquired Haemophilia A, n=7
- ▲ Hereditary Haemophilia A with positive Bethesda assay, n=19
- Hereditary Haemophilia A with negative Bethesda assay, n=26

4 of 26 samples –ve by Bethesda were +ve by ELISA. These 4 did not have clinical suspicion of FVIII inhibitor

Case Study: Weak inhibitor

Sample	% Residual	Titre
Dilution	FVIII	BU/mL
Neat	3	
1/2	22	
1/5	69	0.54x 5 = 2.7
1/10	86	

Case Study: Strong inhibitor

Sample	% Residual	Titre
Dilution	FVIII	BU/mL
Neat	5	
1 / 2	9	
1 / 5	19	
1 / 10	26	
1 / 20	35	
1 / 50	44	1.18 x 50 = 59
1 / 100	65	

Case Study: Auto-anti FVIII, Complex kinetics

Sample	% Residual	Titre
Dilution	= (B/A)*100	BU/mL
Neat	36	
1/2	44	1.2 x 2 = 2.4
1/5	48	1.1 x 5 = 5.5
1 / 10	50	1.0 x 10 = 10.0
1 / 20	52	.95 x 20 = 19
1 / 50	56	1.18x50 = 59

Acquired haemophilia – APTT does not predict inhibitor titre (example of 6 cases of FVIII inhibitors in non-haemophiliac patients)

ID	Inhibitor titre at diagnosis (BU/mL)	APTT (25-37sec)	%FVⅢ (70-220)
1	<mark>8.4</mark>	<mark>68</mark>	3
2	103	104*	<1
3	96	96	<1
4	21	83**	2
5	4.1	108*	4
6	172	81**	3

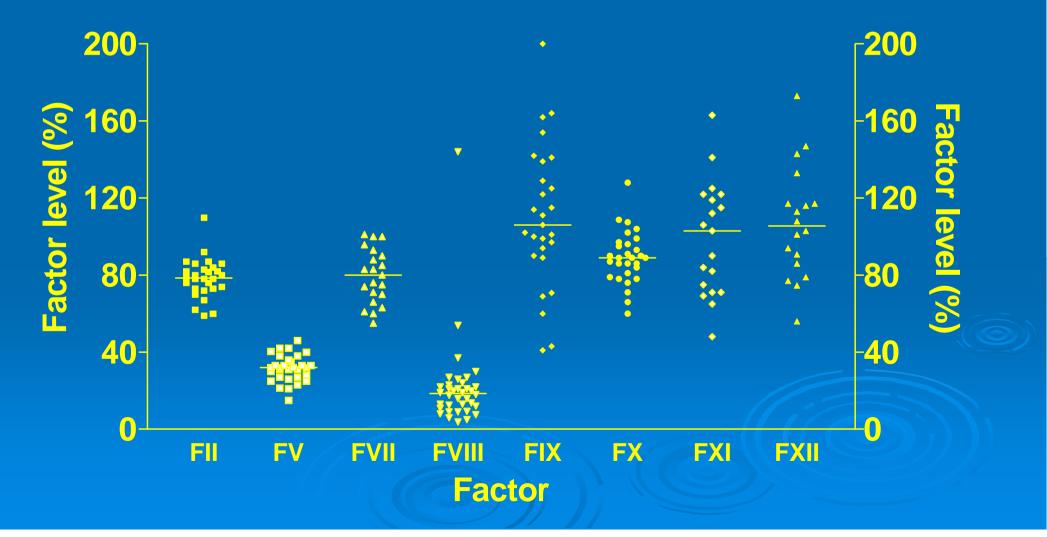
Quality control for FVIII inhibitor assays

Internal

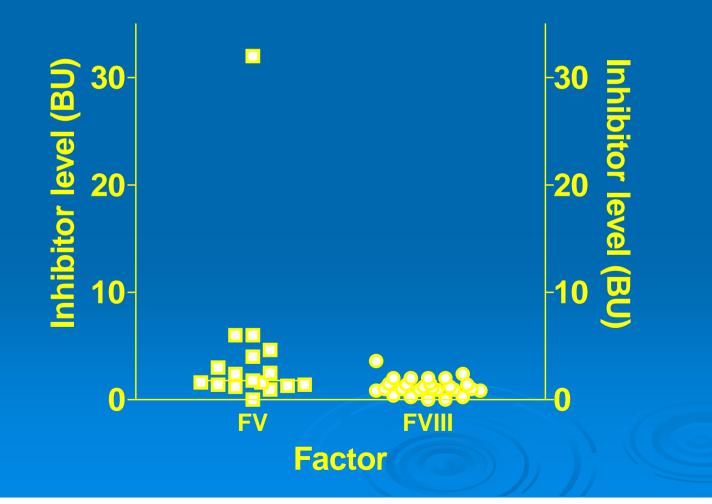
- 1. Minimum: Factor assay QC as in routine factor assays
- 2. Optimum: Positive control with each assay if available

External RCPA (Australia) ECAT (Netherlands)

- 8 samples comprising 2 true positives and 6 'others'
- Intent was to be intellectually challenging & provide true factor inhibitor samples plus samples reflecting potential sample collection/processing artifacts that might otherwise give rise to false inhibitor identification.
- Perceived degree of difficulty per sample varied.
- Easy: LA positive and 'Vit-K/OAT-like' (common).
- Moderate: Heparin contaminated normal sample, aged normal plasma, normal serum (each not uncommon).
- Challenging: FV inhibitor (rare); FVIII inhibitor (common, but sample was defibrinogenated).
- Difficult: EDTA normal sample (very rare).

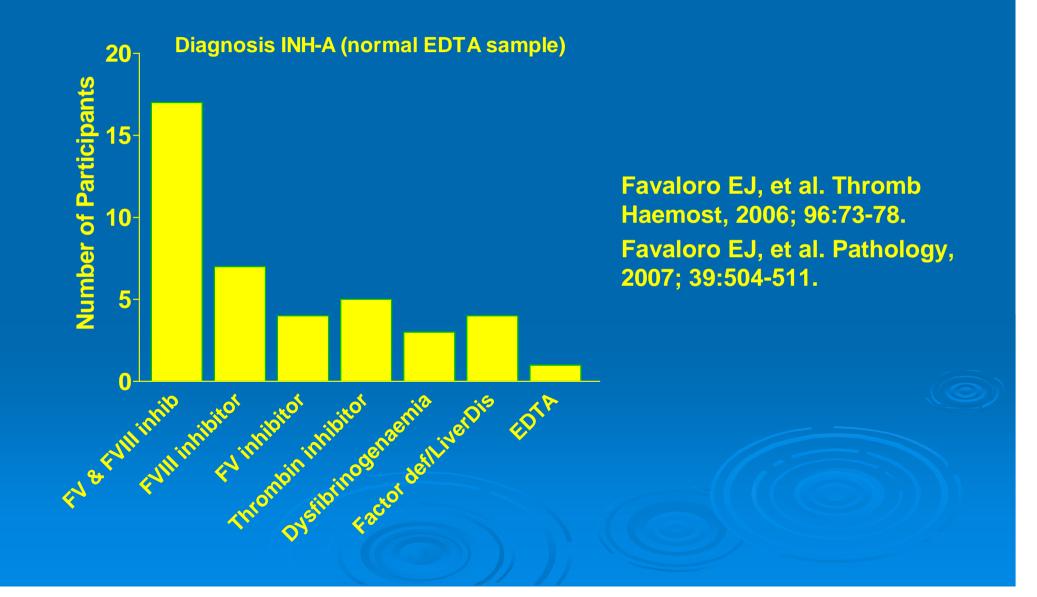

Favaloro EJ, et al. Thromb Haemost, 2006; 96:73-78. Favaloro EJ, et al. Pathology, 2007; 39:504-511.

Factor inhibitor exercise 2005

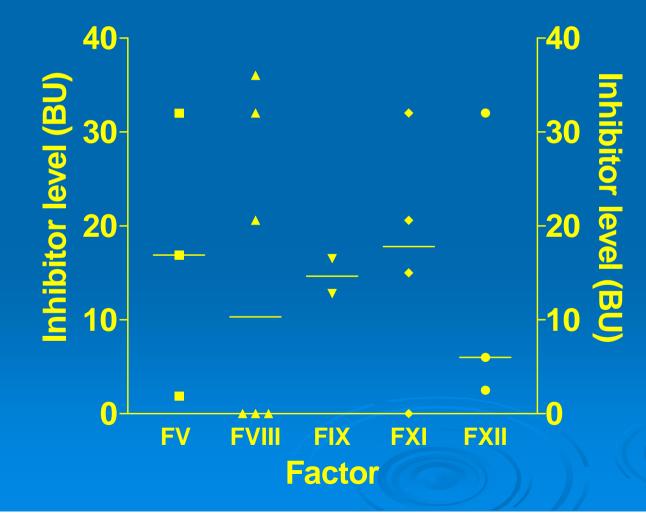

- True factor inhibitor samples were correctly identified by 63% (FV) and 46% (FVIII) participants, but reported (detected) inhibitor levels varied widely.
- Most laboratories correctly identified: Heparin contaminated sample (68%), normal (aged) plasma (87%), normal serum sample (90%), positive LA (98%), 'Vit-k/OAT' (93%).
- Only one laboratory correctly identified the EDTA sample.

Favaloro EJ, et al. Thromb Haemost, 2006; 96:73-78. Favaloro EJ, et al. Pathology, 2007; 39:504-511.

INH-A (normal EDTA sample)



INH-A (normal EDTA sample)



Favaloro EJ, et al. Thromb Haemost, 2006; 96:73-78. Favaloro EJ, et al. Pathology, 2007; 39:504-

511.

INH-C (gross heparin [~10U/ml] contamination)

Favaloro EJ, et al. Thromb Haemost, 2006; 96:73-78. Favaloro EJ, et al. Pathology, 2007; 39:504-511.

Diagnosis INH-D (Heparin sample)

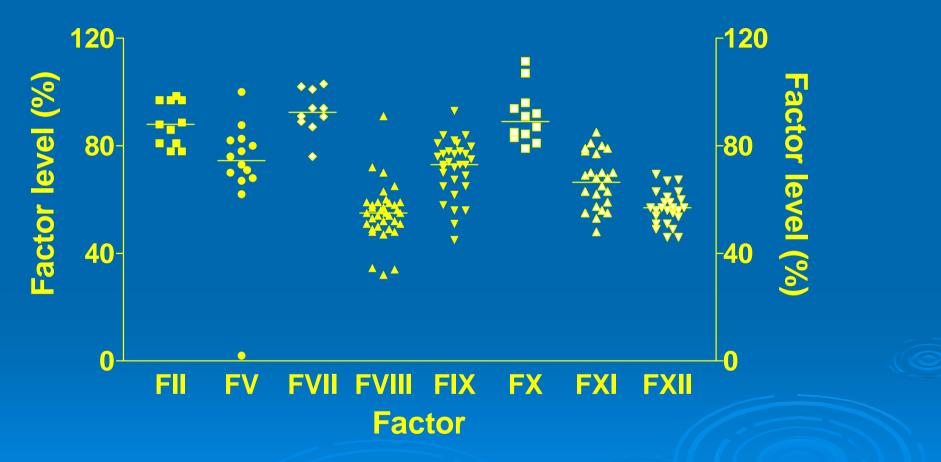
IN Inhibitor defibile sample

30

25

<mark>20</mark>·

1<u>5</u>


10-

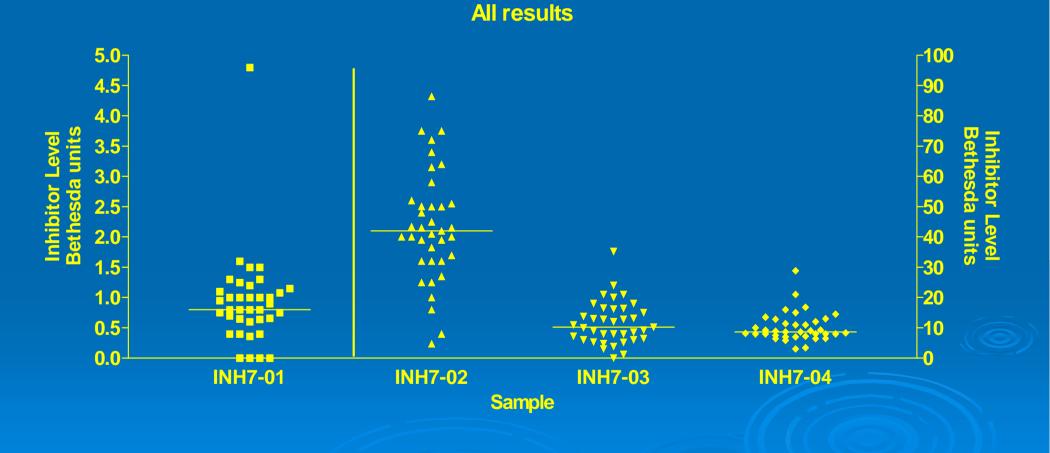
5

Number of Participants

Favaloro EJ, et al. Thromb Haemost, 2006; 96:73-78. Favaloro EJ, et al. Pathology, 2007; 39:504-511.

INH-D (normal aged sample)

Favaloro EJ, et al. Thromb Haemost, 2006; 96:73-78. Favaloro EJ, et al. Pathology, 2007; 39:504-511.


Favaloro EJ, et al. Thromb Haemost, 2006; 96:73-78. Favaloro EJ, et al. Pathology, 2007; 39:504-511.

> Conclusions:

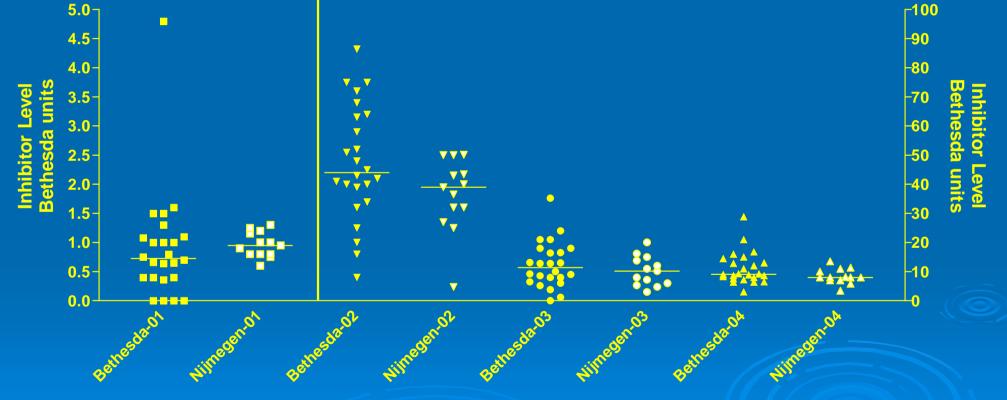
- Laboratories usually get it right, but sometimes get it 'wrong'.
- False positives & false negatives.
- Even if they get it 'right', wide variation in detected inhibitor levels.
- More common presentations more often correctly identified.
- No laboratory correctly identified all samples (the lab that correctly identified the EDTA sample, also correctly identified all other samples except the 'Vit-k/OAT' sample - identified FX deficiency).
- Occasionally, laboratories 'see' factor inhibitors when no such inhibitor exists.

Favaloro EJ, et al. Thromb Haemost, 2006; 96:73-78. Favaloro EJ, et al. Pathology, 2007; 39:504-511.

RCPA QAP FVIII Inhibitor Exercise 2007

Source: RCPA Haematology QAP Inhibitor Exercise Part 2 report

External QAP - FVIII Inhibitor titres RCPA-QAP; n=~35


2007 INH-	Titre Median BU/mL	CV %
1	<mark>8.0</mark>	<mark>84</mark>
2	42	43
3	10.2	<mark>61</mark>
4	<mark>8.6</mark>	48

Compare with ~CV of: VWF:Ag (10%) VWF:CB (20%) **VWF:RCo (20%)** Factor assays: (15%) Protein C: (6%) Hb: (1.2%)

RCPA QAP FVIII Inhibitor Exercise 2007

 ∇ V V V

Bethesda vs Nijmegen

Source: RCPA Haematology QAP Inhibitor Exercise Part 2 report

External QAP - FVIII Inhibitor titres ECAT

sample	Titre		CV %
	(Mean BU/mL)	CV %	(Bethesda vs Neijmen)
06.31	1.3	<mark>41.8</mark>	43.4 v 28.6 **
06.64	1.7	51.5	53.4 v 45.0 **
07.31	1.0	44.6	47.0 v 40.0 **
07.32	0.5	67.9	67.2 v 68.3
07.65	1.3	36.1	35.9 v 37.8
07.66	3.1	38.3	35.9 v 45.0
08.33	3.0	28.2	28.5 v 25.0 **
08.34	1.3	38.5	41.0 v 28.8 **

Sources of variation in inhibitor titre assays

- Type of assay: Nijmegen vs Original assay vs other
- Type of FVIII deficient plasma used: (haemophiliac/immunodepleted; + / - VWF)
- Source of pooled normal plasma: (in-house normal donors; patient donors; FFP; commercial pool)
- Level of FVIII in pooled normal plasma
- Pre-treatment of sample & presence/absence of FVIII in sample
- Normal assay variables of 1-stage FVIII assay (calibrator, APTT reagent, def. plasma, citrate conc. 3.2 v 3.8%)

2005 ECAT survey : TYPE OF NORMAL PLASMA USED

	Home-made Non-buffered	Home-made Buffered	Commercial Non-buffered	Commercial buffered
Bethesda assay, n=93	24	9	15	44
Nijmegen assay, n=30	3	8	2	17
Other n=12	1	3	1	7

Values given are numbers of participants

58% of Bethesda assay users indicated they used buffered normal pooled plasma!!

Thank you:

ECAT – Piet Meijer RCPA QAP – Roslyn Bonar RPA – Geoff Kershaw Westmead – Fiona Kwok