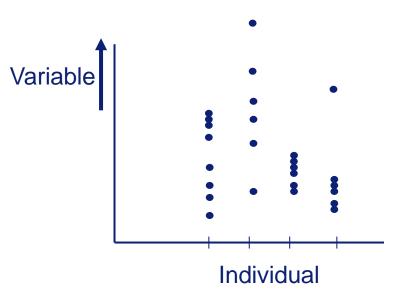


Biological variation of inflammatory and hemostatic markers

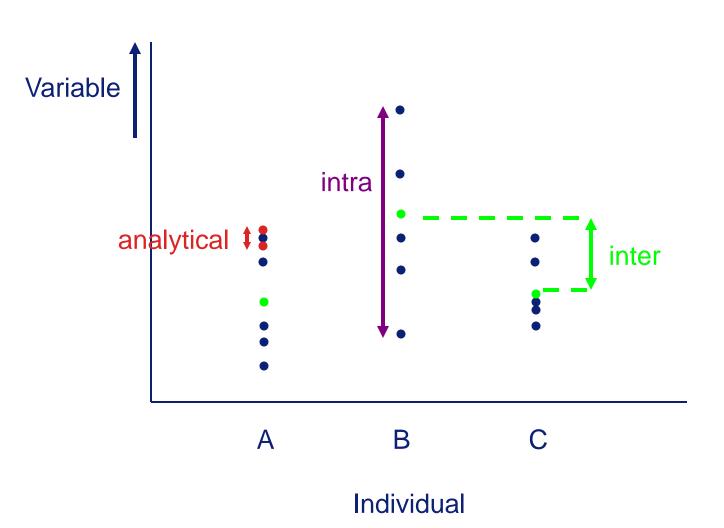
Longitudinal study in healthy subjects

November 7, 2008 ECAT Participant meeting



Introduction

Biological variables can vary within individuals over time



Sources of variation

Inflammatory and thrombophilia markers

- Often only 1 blood sample is taken in studies is this representative of the habitual level?
- Analytical quality specifications
 - Discriminative in a diagnostic setting, but also in cohortstudies?
- Is there a need to take seasonal variation into account?
 - Cardiovascular mortality varies over seasons

Research questions

- 1. Is there a need for multiple measurements of these variables over time?
- 2. What is the maximal recommended analytical variation of the corresponding assays?
- 3. Are the studied variables characterized by seasonal variation?
- 4. What is the effect of air pollution on the studied variables?

Study design

- 40 healthy subjects living or working in Rotterdam region
- 15 blood samples were taken during 1-year from each participant (between January 2005 and December 2006)

• A total of 520 samples collected on 197 different days

Standardization

- Pre-analytical
 - Blood collection while sitting and resting
 - Right antecubital vein
 - Participants were allowed to have a light breakfast
 - Medical questionnaire (smoking, medication, common influenza, etc.)
- Analytical
 - From each participant all samples were assayed in 1 run
- Circadian variation
 - Samples were collected between 9 11 AM

Inflammatory and thrombophilia markers

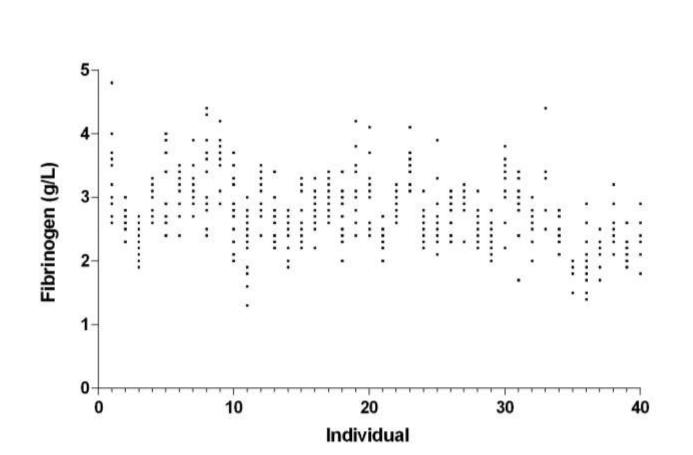
Inflammatory markers

- Fibrinogen
- CRP

Thrombophilia markers

- Prothrombin time
- Thrombin generation
- Antithrombin
- Protein C
- Fibrinogen

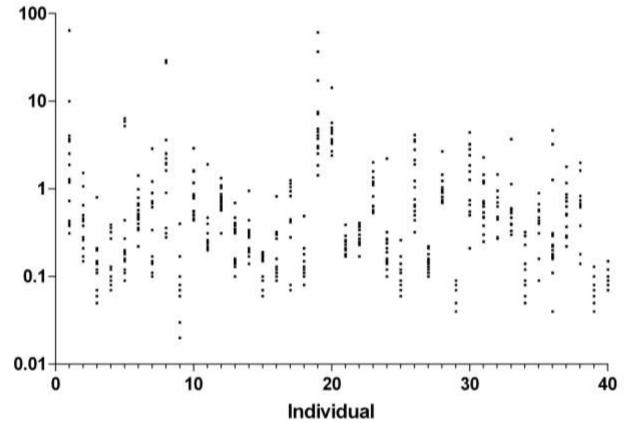
Characteristics of the study population

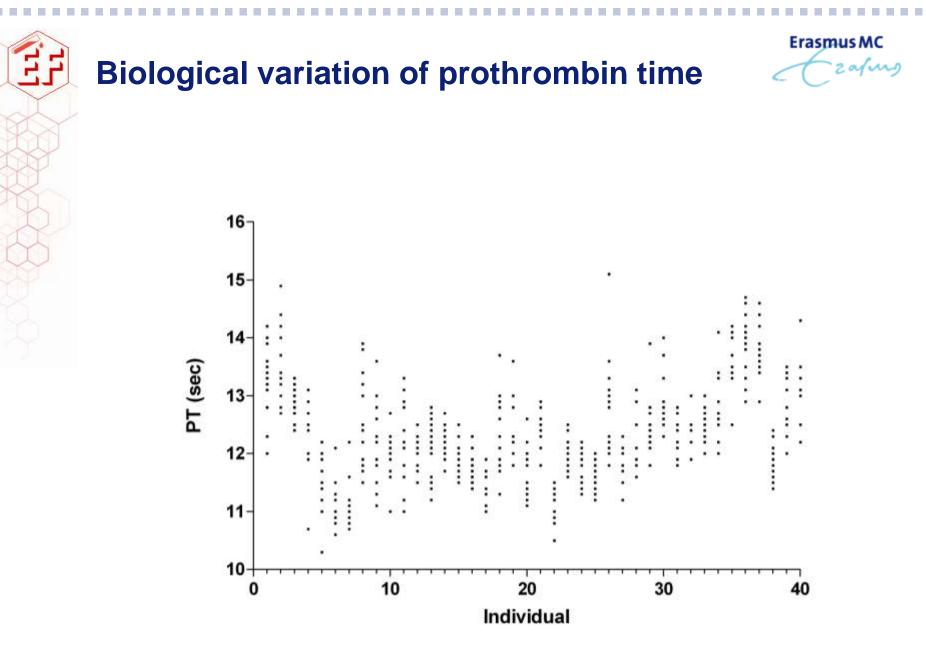

Variable	Study population (n=40)
Age (years)	41 ± 15
Females	26 (65%)
BMI (kg/m²)	22.6 ± 2.0
Smokers	7 (18%)
Oral contraceptives	9 (23%)

Erasmus MC

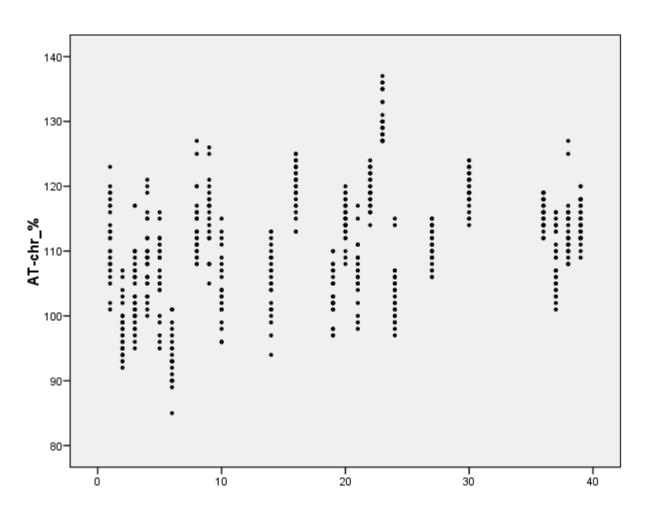
zafing

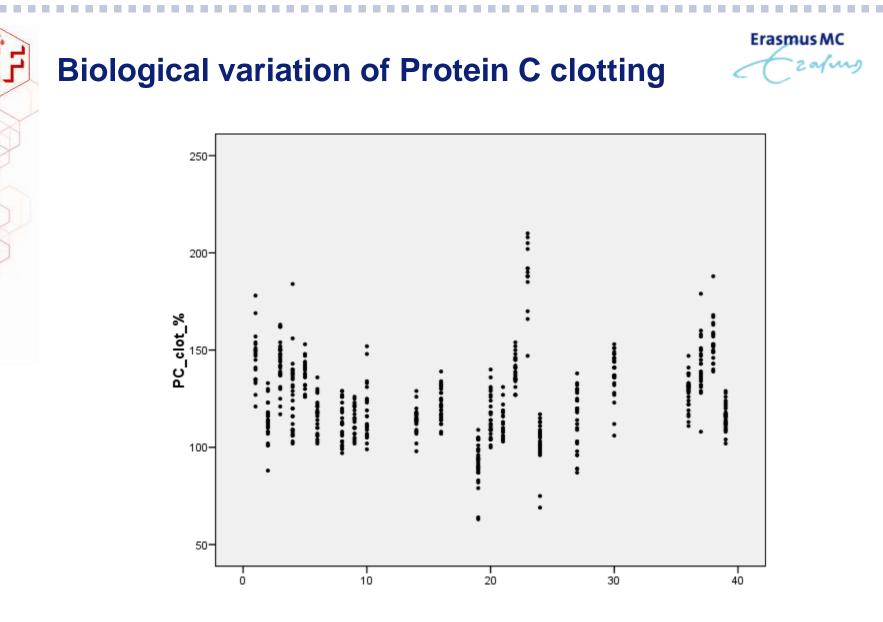
Biological variation of fibrinogen

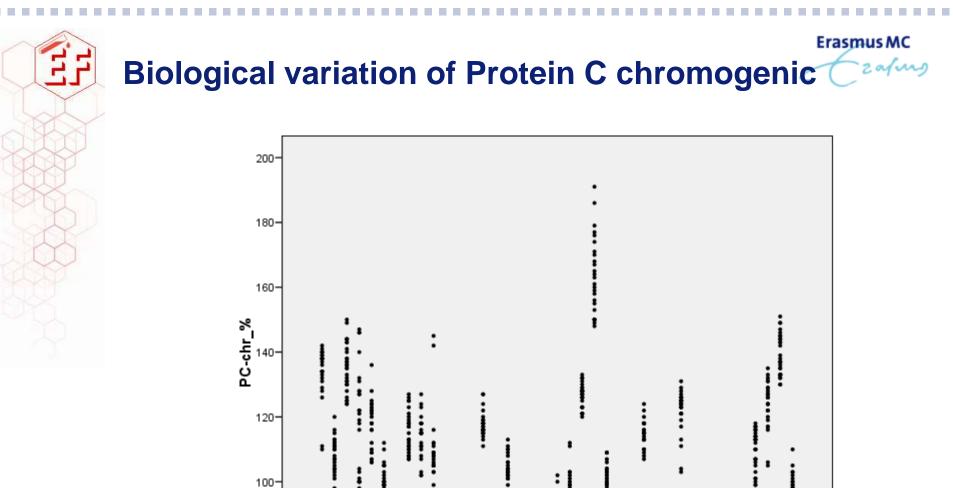




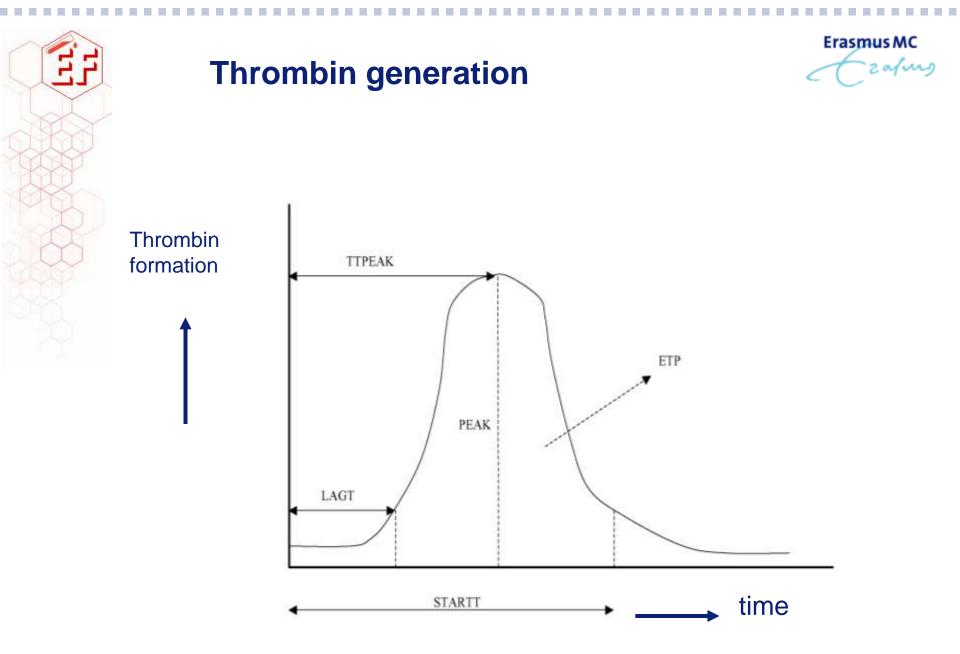
CRP (mg/L)


Biological variation of CRP



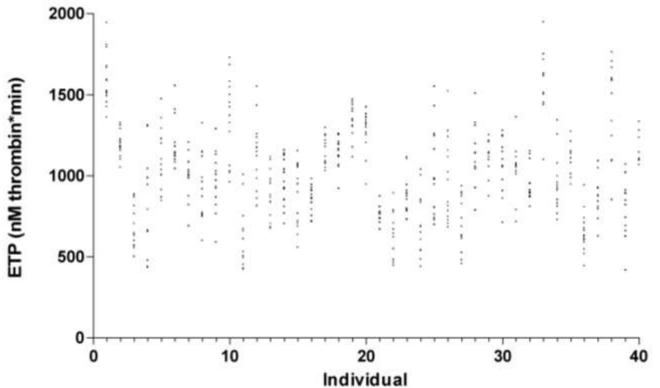

Biological variation of antithrombin

Erasmus MC


zafing

80-

ò



Biological variation of thrombin generation

Endogenous thrombin potential

Erasmus MC

zafing

Components of variation

 $y(ij) = \mu + \alpha(i) + \epsilon(ij)$

 $SD^{2}_{total} = SD^{2}_{between} + SD^{2}_{within} + SD^{2}_{analytical}$

How to express variation:

- Variance
 SD²
- SD √(SD²)
- CV (SD / mean) * 100%

Components of variation

			Coefficient	of Variation	
Variable	Mean	Total	Between- subject	Within- subject	Analytical
Fibrinogen (g/L)	2.8	20%	15%	13%	
CRP (mg/L)	0.37	132%	108%	78%	
Thrombin generation (ETP (nM*min))	1012	29%	24%	17%	
Prothrombin time (sec)	12.3	7.0%	5.7%	3.9%	
Antithrombin (%PP)	110.7	9.0%	7.9%	3.9%	2.1%
Protein C clotting (%PP)	124.6	18.4%	15.5%	8.8%	4.5%
Protein C chromogenic (%PP)	114.9	18.1%	16.1%	6.6%	4.7%

Subgroup analyses and adjustments

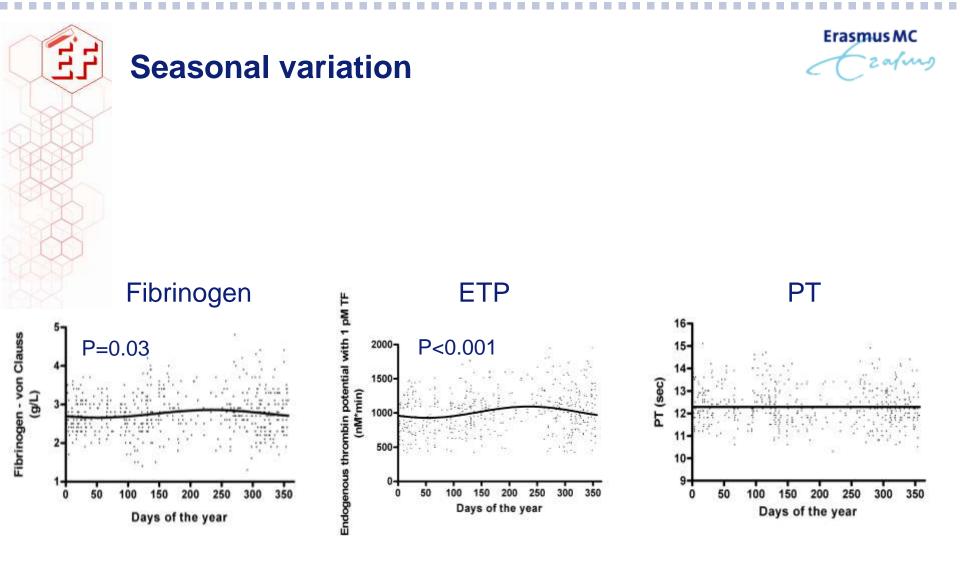
- The results for the between- and within-subject variation only slightly changed when:
 - Outliers were not included
 - The analyses were performed for nonsmokers only
 - in men and women separately
 - after excluding periods of reported disease (common flu)
 - or for nonusers of contraceptives
- Adjustments for age and BMI did not affect significantly the withinsubject (biological) variation.

Contribution of biological to total variation after N repeated measurements

Erasmus MC

zalus

Variable	1	3
Fibrinogen	44%	21%
In[CRP]	34%	15%
ETP	35%	15%
Prothrombin time	32%	13%
Antithrombin	18%	7%
Protein C clotting	23%	9%
Protein C chromogenic	13%	5%

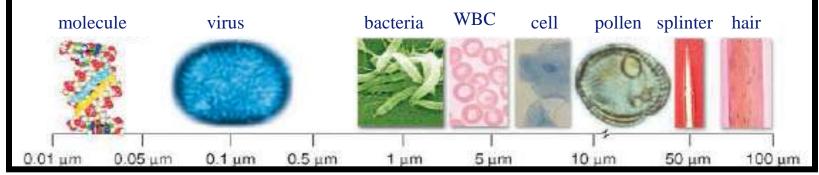


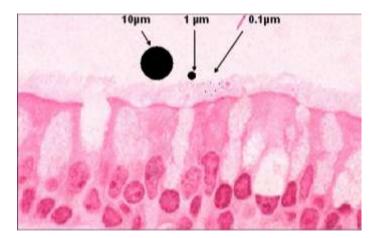
Seasonal variation

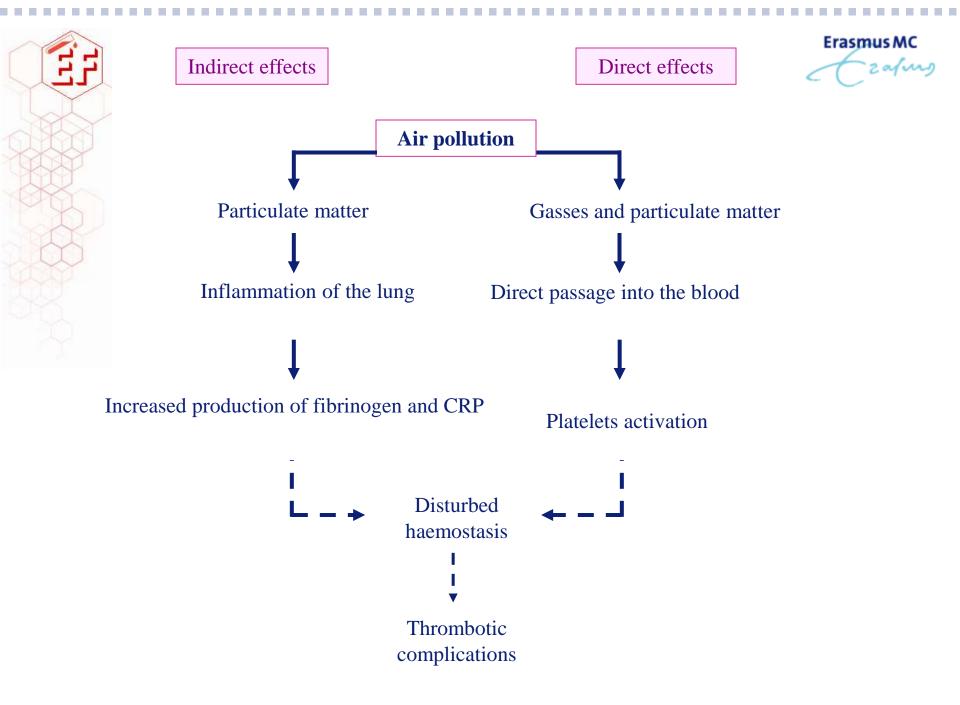
$y = a + b^* sin(2\pi(t-1)/365) + c^* cos(2\pi(t-1)/365)$

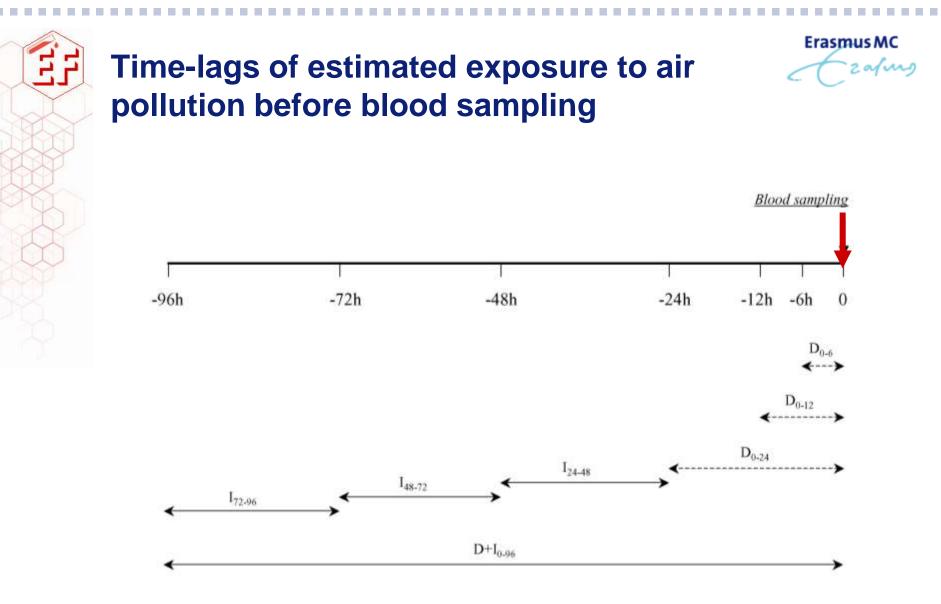
- a: annual mean
- b and c: components of seasonal variation
- *t*: day of the year

Air pollution / particulate matter








Particulate matter

125 1000 PM₁₀ concentration (µg/m³) CO concentration (µg/m³) 100 750 75 500 50 250 25 0 Jan '05 0 Jan '05 Jul 06 Jul '05 Jul 05 Jan '06 Jul'06 Jan '06 Date Date 90 200 175 80 NO concentration (µg/m³) NO₂ concentration 70 150 ("m/grl) 125 50 100 75 30 50 20 25 10 0 Jan '05 0 Jul'05 Jan '06 Jul '06 Jan '05 Jul '05 Jan '06 Jul'06 Date Date 200 175

Erasmus MC

zalug

Variation in air pollution

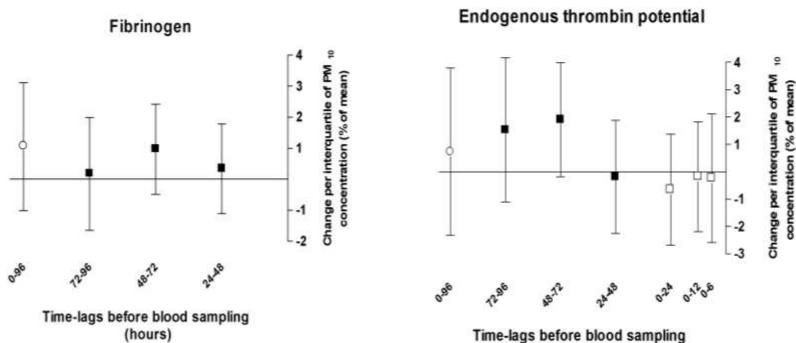
Ę

Date

Jan '06

Jul '06

Jul '05


O₃ concentration (µg/m³)

> 0 1 1 1 Jan '05

Effects of particulate matter

(hours)

EF

Conclusions

- The within-subject variation is much smaller than the betweensubject variation
- For most assays, doing triplicate measurements gives a good estimate of the habitual level (±10%)
- Levels of fibrinogen and thrombin generation showed a strong component of seasonal variation with higher levels during the summer and autumn
- Air pollution may explain part of the biological variation

EF

ERASMUS MC

Dept. Hematology

- Goran Rudez
- Joyce Malfliet
- Femke van de Reijt
- Frank Leebeek
- Moniek de Maat

ECAT Foundation

- Piet Meijer
- Cornelis Kluft
- Moniek de Maat

MAASTRICHT UNIVERSITY

Dept. Internal Medicine Lab. for Clinical Thrombosis and Haemostasis Cardiovascular Research Institute Maastricht (CARIM)

- Evren Kilinc
- Henri MH Spronk
- Hugo ten Cate

Erasmus MC

208 2005		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
2005	Jan																															
	F a h		_																												<u> </u>	
	Feb		_																											┣───		
	Mrt		-																											<u> </u>		
	Apr																															
																														L		
	Mei		_																													
	Juni		-																											<u> </u>		
	Juli																															
	A		_																													
· · · · ·	Aug		_																													
	Sept																															
	Okt				A1						A2		a II		a III				A3								A4					
	Nov	D2	_																											DO		_
	INOV	D2	-	_																										B3		
	Dec																															
2006	Jan		_		B4																											
	Feb		-																			C6								<u> </u>		
																						00										
	Mrt																															
																														L		
· · · ·	Apr		_																													
	Mei		-														C9													<u> </u>		
																	E1-3															
	Juni																															
	Juli		_																													
	Juli		-																											<u> </u>		
	Aug									D12																						
	Sept		_																											<u> </u>		
	Okt		_																											<u> </u>		
																															$\left - \right $	
	Nov																															
	Dec																													<u> </u>	\square	

Recommendations

- Repeated measurements
 - $SD_{total}^2 = SD_{between}^2 + (SD_{within}^2 + SD_{analytical}^2)$ **X Y**
- Analytical specifications
 - Diagnosis
 - SD_(assay) <= 0.58 * SD_(total)
 - Assay variation adds a max. of 12% variability to the total test variability

Erasmus MC

(*i.e.* assay adds only 12% "noise" to the true biological "signal")

- Monitoring
 - SD_(assay) <= 0.50 * SD_(intra)
 - Assay variation adds a max. of 10% variability to the total test variability

Introduction

- Knowing biological variation can help to determine:
 - What is the true habitual level in an individual
 - Quality specifications:
 - Clinical laboratories: Diagnosis
 - Population-based studies: Monitoring